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Foreword

One of the central problems synergetics is concerned with consists in the study of
macroscopic qualitative changes of systems belonging to various disciplines such
as physics, chemistry, or electrical engineering. When such transitions from one
state to another take place, fluctuations, i.e., random processes, may play an im-
portant role.

Over the past decades it has turned out that the Fokker-Planck equation pro-
vides a powerful tool with which the effects of fluctuations close to transition
points can be adequately treated and that the approaches based on the Fokker-
Planck equation are superior to other approaches, e. g., based on Langevin equa-
tions. Quite generally, the Fokker-Planck equation plays an important role in
problems which involve noise, e.g., in electrical circuits.

For these reasons I am sure that this book will find a broad audience. It pro-
vides the reader with a sound basis for the study of the Fokker-Planck equation
and gives an excellent survey of the methods of its solution. The author of this
book, Hannes Risken, has made substantial contributions to the development
and application of such methods, e.g., to laser physics, diffusion in periodic
potentials, and other problems. Therefore this book is written by an experienced
practitioner, who has had in mind explicit applications to important problems in
the natural sciences and electrical engineering.

This book may be seen in the context of the book by C. W. Gardiner, “Hand-
book of Stochastic Methods”, in this series which gives a broad and detailed
overview of stochastic processes, and of the book by W. Horsthemke and R.
Lefever, “Noise-induced Transitions”, which treats a problem of particular
current interest, namely, multiplicative noise.

Readers who are interested in learning more about the connection between
the Fokker-Planck equation and other approaches within the frame of synerget-
ics are referred to my introductory text “Synergetics. An Introduction”.

H. Haken



Preface to the Second Edition

In this second edition various misprints of the first edition have been corrected;
otherwise no changes have been made. Furthermore a supplement has been
added to the material of the first edition. In this supplement a short review of
some new developments with various recent references is given. It is my hope,
that with the inclusion of the supplement this paperback edition will keep the
book up to date in this fast growing field.

I wish to thank my colleague Dr. H.D. Vollmer and my coworkers Dipl.
Phys. Th. Leiber and Dipl. Phys. K. Vogel for their help in preparing the supple-
ment. Furthermore [ wish to thank all of them and Dr. P. Jung, Miss B. Oder
and Dr. K. Voigtlinder for pointing out to me various misprints in the first
edition. I am also grateful to Mrs. I. Gruhler and Mrs. B. Lossa for their secre-
tarial assistance in preparing this second edition.

Ulm, December 1988 H. Risken



Preface to the First Edition

Fluctuations are a very common feature in a large number of fields. Nearly every
system is subjected to complicated external or internal influences that are not
fully known and that are often termed noise or fluctuations. The Fokker-Planck
equation deals with those fluctuations of systems which stem from many tiny dis-
turbances, each of which changes the variables of the system in an unpredictable
but small way. The Fokker-Planck equation was first applied to the Brownian
motion problem. Here the system is a small but macroscopic particle, immersed
in fluid. The molecules of the fluid kick around the particle in an unpredictable
way so the position of the particle fluctuates. Because of these fluctuations we do
not know its position exactly, but instead we have a certain probability to find
the particle in a given region. With the Fokker-Planck equation such a prob-
ability density can be determined. This equation is now used in a number of dif-
ferent fields in natural science, for instance in solid-state physics, quantum
optics, chemical physics, theoretical biology and circuit theory.

This book deals with the derivation of the Fokker-Planck equation, the
methods of solving it, and some of its applications. Whereas for some cases (e.g.,
linear problems, stationary problems with only one variable) the Fokker-Planck
equation can be solved analytically, it is in general very difficult to obtain a
solution. Various methods for solving the Fokker-Planck equation such as the
simulation method, eigenfunction expansion, numerical integration, the varia-
tional method and the matrix continued-fraction method will be discussed. The
last method especially, which turns out to be very effective in dealing with simple
Fokker-Planck equations having two variables, is treated in detail. As far as I
know it has not yet been presented in review or book form.

In the last part of the book the methods for solving the Fokker-Planck
equation are applied to the statistics of a simple laser model and to Brownian
motion in potentials, especially in periodic potentials. By investigating the
statistical properties of laser light, I first became acquainted with the Fokker-
Planck equation and I soon learned to appreciate it as a powerful tool for
treating the photon statistics of lasers and the statistics of other nonlinear
systems far from thermal equilibrium.

The main emphasis in the applications is made to the problem of Brownian
motion in periodic potentials. This problem occurs, for instance, in solid-state
physics (Josephson tunneling junction, superionic conductor), chemical physics
(infrared absorption by rotating dipoles) and electrical circuit theory (phase-
locked loops). Whereas the Fokker-Planck equation for this problem was solved



VIII Preface to the First Edition

many years ago for the overdamped case (large friction), solutions for arbitrary
friction have been obtained only recently. It will be shown that the solution of the
corresponding Fokker-Planck equation for Brownian motion in periodic poten-
tials (as well as for other potentials) can be expressed in terms of matrix con-
tinued fractions which are very suitable for computer evaluation.

The present book is based on seminar and lecture notes, prepared and
presented at the University of Ulm. Hopefully this book will be useful for
graduate students in physics, chemical physics and electrical engineering to get
acquainted with the Fokker-Planck equation and the methods of solving it, and
that some parts of it will also be profitable to the research worker in these fields.

I wish to thank Prof. H. Haken for inviting me to write this monograph for
the Springer Series in Synergetics. As a co-worker of Prof. Haken for nearly ten
years, I had the privilege to work with him and his group in a very stimulating
and creative atmosphere. I also want to express my gratitude to Dr. H. Lotsch
and his staff of the Springer-Verlag for their co-operation. Next I wish to thank
my co-worker and colleague Dr. H. D. Vollmer. Most of my research on the
Fokker-Planck equation was done in close collaboration with him. With only few
exceptions he has also provided me with the numerical results presented in this
book. Furthermore, he has made many suggestions for improving the manu-
script. The help of Dipl. Phys. P. Jung, Dr. M. Mérsch, and Dipl. Phys. K.
Voigtlander for preparing the figures and for reading the proofs is also greatly
appreciated. Last but not least I wish to thank Mrs. 1. Gruhler and Mrs. H. Wen-
ning for skilfully and patiently typing and correcting the manuscript.

Ulm, February 1984 H. Risken
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1. Introduction

A Fokker-Planck equation was first used by Fokker [1.1] and Planck [1.2] to
describe the Brownian motion of particles. To become familiar with this equa-
tion we first discuss the Brownian motion of particles in its simplest form.

1.1 Brownian Motion

1.1.1 Deterministic Differential Equation

If a small particle of mass m is immersed in a fluid a friction force will act on the
particle. The simplest expression for such a friction or damping force is given by
Stokes’ law

F.=—av. 1.1

Therefore the equation of motion for the particle in the absence of additional
forces reads

mo+aqv=20 1.2)
or
v+yv=0; y=a/m=1/1. 1.3)

Thus an initial velocity ©(0) decreases to zero with the relaxation time 7= 1/y
according to

v(f)=v0)e "= v(0)e 7. (1.4)

The physics behind the friction is that the molecules of the fluid collide with the
particle. The momentum of the particle is transferred to the molecules of the
fluid and the velocity of the particle therefore decreases to zero. The differential
equation (1.3) is a deterministic equation, i.e., the velocity v(¢) at time ¢ is
completely determined by its initial value according to (1.4).
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1.1.2 Stochastic Differential Equation

The deterministic equation (1.2) is valid only if the mass of the particle is large so
that its velocity due to thermal fluctuations is negligible. From the equipartition
law, the mean energy of the particle is (in one dimension)

LIm(v?y=1kT, (1.5)

where k is Boltzmann’s constant and T is the temperature. For smaller mass m
the thermal velocity vy, = |/ (v = |/kT/m may be observable and therefore
the velocity of a “small” particle cannot be described exactly by (1.3) with the
solution (1.4). If the mass of the small particle is still large compared to the mass
of the molecules, one expects (1.2) to be valid approximately. Equation (1.2)
must, however, be modified so that it leads to the correct thermal energy (1.5).
The modification consists in adding a fluctuating force Fi(¢) on the right-hand
side of (1.2), i.e., the total force of the molecules acting on the small particle is
decomposed into a continuous damping force F.(¢) and a fluctuating force F(?)
according to [1.3].

F(t) = F(t)+ Fi(t) = —av(?) + Fy(?) . (1.6)

This force Fy(t) is a stochastic or random force, the properties of which are given
only in the average.

We now want to discuss why a stochastic force occurs. If we were to treat the
problem exactly, we should have to solve the coupled equations of motion for all
the molecules of the fluid and for the small particle, and no stochastic force
would occur. Because of the large number of molecules in the fluid (the number
is of the order 1023), however, we cannot generally solve these coupled equations.
Furthermore, since we do not know the initial values of all the molecules of the
fluid, we cannot calculate the exact motion of the small particle immersed in the
fluid. If we were to use another system (particle and fluid) identical to the first
except for the initial values of the fluid, a different motion of the small particle
results. As usually done in thermodynamics, we consider an ensemble of such
systems (Gibbs ensemble). The force F(¢) then varies from system to system and
the only thing we can do is to consider averages of this force for the ensemble.

Inserting (1.6) into (1.2) and dividing by the mass we get the equation of
motion

v+yo=1(). .7
Here we have introduced the fluctuating force per unit mass
I'(t)=Fy(t)/m, (1.8)

which is called the Langevin force. Equation (1.7) is called a stochastic differen-
tial equation because it contains the stochastic force I'(¢).



1.1 Brownian Motion 3

To proceed further one has to know some properties of this Langevin force
I(?). First we assume that its average over the ensemble should be zero

I(0)=0, (1.9

because the equation of motion of the average velocity (v(¢)) should be given by
(1.2). If we multiply two Langevin forces at different times we assume that the
average value is zero for time differences ¢’ — ¢ which are larger than the duration
time 1, of a collision, i.e.,

(COI@)y=0 for |t—t'|z1. (1.10)

This assumption seems to be reasonable, because the collisions of different
molecules of the fluid with the small particle are approximately independent.
Usually, the duration time 7, of a collision is much smaller than the relaxation
time 7= 1/y of the velocity of the small particle. We may therefore take the limit
70— 0 as a reasonable approximation, giving

IOIrE)y=qo—-1t"). (1.11)

The ¢ function appears because otherwise the average energy of the small particle
cannot be finite as it should be according to the equipartition law (1.5). This will
be discussed in detail in Sect. 3.1, where it is furthermore shown that the noise
strength g of the Langevin force is then given by

q=2ykT/m. / 1.12)

To determine higher correlations like {v{#;)v(¢;)...v(¢,)) higher correlations of
I(¢) must be known. One usually assumes that the I'(¢) have a Gaussian distribu-
tion with ¢ correlation (Chap. 3). By integrating the Langevin equation (1.7) and
by using (1.9, 11, 12) we can calculate the diffusion constant (Chap. 3). Asis well
known, this diffusion constant was first obtained by Einstein [1.4], who initiated
the term theory of Brownian motion.

A noise force with the J correlation (1.11) is called white noise, because the
spectral distribution (Sect. 2.4.3) which is given by the Fourier transform of
(1.11) is then independent of the frequency w. If the stochastic forces I'(¢) are
not J correlated, i.e., if the spectral density depends on the frequency, one uses
the term colored noise.

1.1.3 Equation of Motion for the Distribution Function

Because in (1.7) I'(¢) varies from system to system in the ensemble, i.e., it is a
stochastic quantity, the velocity will also vary from system to system, i.e., it will
become a stochastic quantity, too. We therefore may ask for the probability to
find the velocity in the interval (v, v+ dv), or in other words we may ask for the
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number of systems of the ensemble whose velocities are in the interval (v, v +dv)
divided by the total number of systems in the ensemble. Because v is a continuous
variable we may ask for the probability density W(v), also often called prob-
ability distribution in the physical literature. The probability density times the
length of the interval dv is then the probability of finding the particle in the
interval (v, v+ dv). This distribution function depends on time 7 and the initial
distribution. The equation of motion for the distribution function W(uv,?)
(Chap. 4) is given by

oW v kT d*W
_ oW KT W

1.13
at dv m ov* (1.13)

Equation (1.13) is one of the simplest Fokker-Planck equations. By solving (1.13)
starting with W(v,0) for =0 and subject to the appropriate boundary condi-
tions, one obtains the distribution function W (v, ¢) for all later times. Once we
have found W(v,t), any averaged value of the velocity can be calculated by in-
tegration [#(v) arbitrary function of v]

)

@)y = § k() W(v,t)dv. (1.14)

— 0o

As shown in Sect. 4.7.2, averaged values for multi-time functions may also, for
certain processes, by evaluated by use of appropriate solutions of (1.13).

1.2 Fokker-Planck Equation

In this introductory chapter it is mainly discussed how a Fokker-Planck equation
and some special forms of it look, how they arise and where and how one may
use the Fokker-Planck equation. Many review articles and books on the Fokker-
Planck equation exist [1.5—15].

1.2.1 Fokker-Planck Equation for One Variable

In Sect. 1.1 we found an equation of motion for the distribution function W(v, t)
for one-dimensional Brownian motion. As mentioned, it is a special Fokker-
Planck equation. The general Fokker-Planck equation for one variable x has the
form

ow d a2
W _1_ % pOxy+ L _DPw) | W. - 1.15
. [ = D) + 5 DI (1.15)
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In (1.15) D®(x) >0 is called the diffusion coefficient and DD (x) the drift coef-
ficient. The drift and diffusion coefficients may also depend on time. Equation
(1.13) is seen to be a special Fokker-Planck equation where the drift coefficient is
linear and the diffusion coefficient is constant. Equation (1.15) is an equation of
motion for the distribution function W(x,¢). Mathematically, it is a linear
second-order partial differential equation of parabolic type. Roughly speaking, it
is a diffusion equation with an additional first-order derivative with respect to x.
In the mathematical literature, (1.15) is also called a forward Kolmogorov
equation.

1.2.2 Fokker-Planck Equation for NV Variables

A generalization of (1.15) to the N variables x;...xy has the form

ow - M o Lo
—=| - X —D(xh+ Z ——Dj(xp | W. (1.16)
ot i=1 Ox; ij=1 0Xx;0x;

The drift vector D{" and the diffusion tensor D generally depend on the N
variables x;, ..., xy = {x}. The Fokker-Planck equatlon (1.16) is an equation for
the distribution function W({x}, ) of N macroscopic variables {x}. (Here x; may
be variables of different kinds for instance position and velocity.)

1.2.3 How Does a Fokker-Planck Equation Arise?

As discussed already for the Brownian motion case, the complete solution of a
macroscopic system would consist in solving all the microscopic equations of the
system. Because we cannot generally do this we use instead a stochastic descrip-
tion, i.e., we describe the system by macroscopic variables which fluctuate in-a
stochastic way. The Fokker-Planck equation is just an equation of motion for
the distribution function of fluctuating macroscopic variables. For a deter-
ministic treatment we neglect the fluctuations of the macroscopic variables. For
the Fokker-Planck equation (1.16) this would mean that we neglect the diffusion
term.

Equation (1.16) is then equivalent to the system of differential equations

(i=1,...,N)
dx;/dt = %;= DV (xy, ..., xn) = DV ({x) (1.17)

for the N macrovariables {x}. Table 1.1 gives a schematic representation of the
following three stages of treating a system. A rigorous derivation of stochastic
treatment should start with microscopic description. The deterministic treatment
should then follow from the stochastic treatment by neglecting the fluctuations,
as indicated by the big arrows. The drift and diffusion coefficients D{" and D(Z)
especially should be derived rigorously from the microscopic equations. Such a
rigorous derivation may be very complicated or even impossible. In this case, one
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Table 1.1. Three stages of treating a system

microscopic stochastic deterministic
treatment treatment treatment
equation of = | equation of motion = | system of
motion for all for the distribution differential
microscopic function of macro- equations
variables scopic variables for

(or stochastic differ- |+ macroscopic

ential equation) variables

= rigorous derivation, « heuristic derivation

may start with the deterministic equation and use heuristic arguments to obtain
the stochastic description, as indicated by the small arrow in Table 1.1. In the
heuristic treatment one usually adds some Langevin forces to the deterministic
equation (1.17) and thus obtains a stochastic differential equation which is equi-
valent (for properly chosen Langevin forces) to a Fokker-Planck equation. The
noise strength may then be determined by some other arguments, for example by
use of the equipartition theorem. We thus obtain the Fokker-Planck equation
(1.13) for Brownian motion of a particle as discussed in Sect. 1.1.

The Fokker-Planck equation is of course not the only equation of motion for
the distribution function. Other equations like the Boltzmann equation and
master equation are discussed shortly below. The Fokker-Planck equation is one
of the simplest equations for continuous macroscopic variables. It usually
appears for variables describing a macroscopic but small subsystem, like the
position and velocity for the Brownian motion of a small particle, a current in an
electrical circuit, the electrical field in a laser. If the subsystem is larger the fluc-
tuations may then usually be neglected and thus one has a deterministic equation.
In those cases, however, where the deterministic equations are not stable, a
stochastic description is then necessary even for large systems.

1.2.4 Purpose of the Fokker-Planck Equation

By solving the Fokker-Planck equation one obtains distribution functions from
which any averages of macroscopic variables are obtained by integration. Since
the application of the Fokker-Planck equation is not restricted to systems near
thermal equilibrium, we may as well apply it to systems far from thermal equilib-
rium, for instance, the laser. As shown in Chap. 12, the statistics of laser light
may very well be treated by a Fokker-Planck equation. An ion in a superionic
conductor under the influence of an additional strong external field would also
be a system far from thermal equilibrium, a simple model of which will be treated
by a Fokker-Planck equation in Chap. 11. The Fokker-Planck equation not only
describes stationary properties, but also the dynamics of systems, if the appro-
priate time-dependent solution is used.
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1.2.5 Solutions of the Fokker-Planck Equation

In this book we are mainly concerned with the methods for solving the Fokker-
Planck equation and with its applications. Analytic solutions of the Fokker-
Planck equation can be found in the following cases.

1) Linear drift vector and constant diffusion tensor. In this case, one obtains
Gaussian distributions for the stationary as well as for the instationary solu-
tions (see Sects. 3.2, 5.3, 6.5).

2) Detailed balance condition. If the drift vector and the diffusion matrix obey
certain potential conditions (Sect. 6.4), the stationary solution is obtained by
quadratures.

3) For a Fokker-Planck equation with one variable one also obtains the station-
ary solution by quadratures even if detailed balance is not valid, i.e., prob-
ability current not zero (Sect. 5.2).

In other special cases one may also find analytic solutions. Generally, however, it
is difficult to obtain solutions of the Fokker-Planck equation especially if no
separation of variables is possible or if the number of variables is large.

Various other methods of solution to be discussed in detail are: simulation
methods (Sect. 3.6); transformation of a Fokker-Planck equation to a
Schrodinger equation (Sects. 5.4, 6.3); numerical integration methods (Sects.
5.9.2, 6.6.4); analytic solutions for certain model potentials (Sect. 5.7) for a one-
variable Fokker-Planck equation; matrix continued-fraction solutions for a two-
variable Fokker-Planck equation (Sect. 6.6.6); and instationary solutions for
time-varying small external fields (linear response, Chap. 7).

1.2.6 Kramers and Smoluchowski Equations

The Klein-Kramers or Kramers equation [1.16, 17] and the Smoluchowski [1.18]
equation are special forms of the Fokker-Planck equation. The Kramers
equation is an equation of motion for distribution functions in position and
velocity space describing the Brownian motion of particles in an external field. In
the one-dimensional case it has the form [W = W(x, v, t)]

2
ﬂ={_iv+i<y,,_ﬂx)>+y” 0 ]W. (1.18)

ot dx dv m m  dv?

Here yis the friction constant, m ist the mass of the particle, T is the temperature
of the fluid, k£ Boltzmann’s constant, and F(x) = —mf’ (x) is the external force
where mf(x) is the potential. Without any external force and x dependence (1.18)
reduces to (1.13). The stochastic differential equation corresponding to (1.18) is
xX=v
v=—yv+Fx)/m+I(t) (1.19)
KIF@Yr@)y=2ykT/m)o(t-t').
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In the absence of the force F(x) the last two equations of (1.19) reduce to 1.7,
11, 12). The first two equations of (1.19) may be written as the equation of
motion

mi+myx =F(x)+mI(t). (1.20)

Methods of solving (1.18) are treated in Chap. 10. The solutions and applications
of (1.18) for a periodic potential are discussed in Chap. 11. Here we want to men-
tion only that in the stationary state (and for suitable boundary conditions) the
solution of (1.18) is given by the Boltzmann distribution (N is the normalization
constant)

Wy (x,v) = Nexp[—E/(kT)]

(1.21)
E=mv¥/2+mf(x),
as may be easily checked by insertion.
For large friction constants y we may neglect the second derivative with
respect to time in (1.20). We then obtain the stochastic differential equation

%= F(x)/ (my)+T(t)/y (1.22)

and the corresponding Fokker-Planck equation for the distribution function in
position [W = W(x, 1)}
ow 1

() 92
=~ | - —FX)+kT—5|W. (1.23)
ot my ox ox

This equation is called the Smoluchowski equation. The derivation of (1.23)
from Kramers equation (1.18) and the higher corrections to (1.23) (inverse fric-
tion expansion) are discussed in Sect. 10.4. The Smoluchowski equation itself is
treated in Chap. 5.

1.2.7 Generalizations of the Fokker-Planck Equation

Several generalizations of the Fokker-Planck equation (1.15) are in use. (For sim-
plicity we discuss the case of one variable only.) First we consider an equation
which does not stop after the second derivative with respect to x, but also
contains higher derivatives. The general expansion with an infinite number of
terms, i.e., :

—= 21 <— a%) D)W, (1.24)

is called the Kramers-Moyal expansion [1.17, 19]. If x obeys a Langevin equation
with Gaussian d-correlated noise, it is shown in Sects. 3.3.2 and 4.1 that all coef-
ficients D with v =3 vanish and (1.24) then reduces to the Fokker-Planck
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equation (1.15). If x is a discrete variable the coefficients D" do not vanish
generally, see Sect. 4.5 for an example. In this case we may truncate expansion
(1.24) after the second term and again obtain as an approximation the Fokker-
Planck equation (1.15). One may ask whether the truncation after some finite
term, i.e.,

N v
Eu_/zz _08 DYx)W; wo>N>2 1.25)
or  v=1 ox

is useful. We shall see in Sect. 4.3 that for nonvanishing D®’ the transition prob-
ability [i.e, the solution of (1.25) with the initial distribution d(x—x') at ¢ = 0}
must have negative values for sufficiently small times. Because the probability
density must always be positive, one therefore may think that (1.25) is of no use
at all. However, a simple example in Sect. 4.6 shows that (1.25) may nevertheless
be suitable to calculate the probability density quite accurately.

Another possibility to generalize (1.15) consists in taking memory effects into
account. Then

t 2
W _ § —iD(”(x,t—r)+a_zD(2)(x,t—r) W(x, )dr, (1.26)
dt “w| B dx

X

which we call, in association with the generalized master equation (Sect. 1.4), a
generalized Fokker-Planck equation. Whereas for the Fokker-Planck equation
(1.15) the distribution function is completely determined by the distribution
function at ¢t = t, (Markov process), the process described by (1.26) is determined
by all earlier distributions (non-Markovian process). However, if the memory
coefficients DY and D® decrease very rapidly in time, we recover the Fokker-
Planck equation (1.15).
A more general equation would read

dW(x, 1)/0t = f K(x,t— 1) Wix, 1)dt, (1.27)

where the memory kernel may either contain differential operators (finite or
infinite order) or it may be an integral operator with respect to x or some other
linear operator. An equation of the form (1.27), for instance, occurs if one tries
to eliminate the velocity variable in the Kramers equation (Sect. 10.3.1).

1.3 Boltzmann Equation

The first equation of motion, which was derived for the distribution function of
a dilute gas in position and velocity space, is the Boltzmann equation [1.20]. Here
fe, v, 1)d3xd? v is the number of gas molecules in the volume element d3xd?v of
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the position and velocity space, also called u space. For particles moving in an
external force F(x) this equation takes the form

<_a_+ v v, + L) V,,>f(x,u,t) = <a—f> , (1.28)
ot m ot /con
<%f7> =jd3uljd9|v—v1|o-(v,v1|v’,v1’)
coll
x [fee, v, 0) flx, 01, 1) — f&x, 0, ) f(x, 04, D] . (1.29)

In (1.28) V,and V, denote the gradient with respect to position and velocity. In
the collision operator (1.29) o(v,vq | v',v{) is the differential scattering cross
section of two colliding gas molecules with velocity v and v, before and v’ and v{
after the collision. The space angle between v— v and v’ — v{ is denoted by Q.
Furthermore, certain symmetries for the differential cross section and the con-
servation laws for energy and momentum for each collision are assumed to be
valid. A very high obstacle for finding a general solution of (1.28) is the non-
linearity occurring in the collision operator (1 .29). For certain processes one may
try to linearize the collision operator. A system in which one particle is very large
compared to the others gives a linear equation for the distribution function of
this particle. One may actually show that this equation reduces to the Fokker-
Planck equation (1.13) or to its three-dimensional form [1.21, 22].

The complicated nonlinear collision operator (1.29) may also be approxi-
mated by some linear model operator. In the BGK model [1.23] one assumes that
after each collision the velocity distribution becomes the Maxwell distribution.
The BGK collision operator has the form (1/y is the relaxation time)

of m —mp2/QKT) 3
— = 0, _ 0, . 20
<at>con y“/ 2nkT ¢ fx,0,d’v—flx,0,0) (1.30)

Considering only the one-dimensional case, (1.28) then reduces for the BGK
model to

4] 0 F 0
—tp—+— —)f=L s 1.31
<6t ox m 6u>f conf ( )

where the linear operator L is given by

m —mv?
L0011=L]c30GHK=y<|/ me " /(2k”5---dv—1>- (1.32)

It should be noted that the Kramers equation (1.18) may be written in the same
form as (1.31), where the collision operator reads
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() kT d*
Loy=Lgy= )’< v+ — —> . (1.33)
ov m 9v?

In the absence of an external force F(x) the Maxwell distribution exp[—m v/
(2k 7] is the stationary solution of (1.31) for both collision operators. As shown
in App. 2, we may treat (1.31, 32) by the same matrix continued-fraction method
used in Chap. 10 for the Kramers equation.

1.4 Master Equation

Very general linear equations for the probability density are the master equation
and the generalized master equation [1.24—29]. If the variable x takes only
integer values, the master equation has the form [1.24]

W, /8t = W,= ¥ [w(tm—n) W,,—w(n-m)W,] . (1.34)

In (1.34) W,,is the probability to find the integer value n and w(m—n) is the tran-
sition rate from m to n which must be positive. For a continuous variable the sum
must be replaced by an integration, i.e., we then have

OW(x,t)/0t= Wi(x,t) = fiwx’ »x) Wx', ) — wx—x") Wix, 0ldx'. (1.35)

The probability at a later time is completely determined by the probability at time
t =ty i.e., the process described by (1.34) is a Markov process. The Fokker-
Planck equation (1.15) is a special form of the continuous master equation
(1.35). Here the transition probability w(x’—x) is given by

)

w(x’—»x)z[— DY) + — e D@)(x)] o(x—x"). (1.36)

Inserting this expression into (1.35) leads to (1.15). Notice that in the first term
on the right-hand side in (1.35) one can use fo(x—x")yW(x',t)dx' = W(x,t) and
that the last term on the right-hand side vanishes because of the derivative 8/dx’.

The generalized master equation has the form [1.25—-27] (for reviews, see
[1.28, 29))

t

W= | [Z w(n—-m,t—7) W,(1)— L wim—n,[—1) Wn(r)} dr. (1.37)

— 0o

The change of the probability not only depends on the probability at time ¢ but
also on the previous history. The previous probabilities enter with the weight
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function w(n—m, t— 1) which describes the memory and so is called a memory

m-n
function. An equation similar to (1.37) and its continuous analog follows from
the microscopic equations by eliminating the irrelevant variables with the
Nakajima-Zwanzig [1.26, 27) projector formalism (see also [1.28, 29] and the
recent review by Grabert [1.30] on projection operator techniques).



2. Probability Theory

In this chapter we recapitulate some of the basic ideas and conceptions of prob-
ability theory needed to unterstand the other chapters. Though there are many
text books on probability theory [2.1 — 6], a selection of basic ideas and concepts
of probability theory in a simplified form may be in order for the reader not very
familiar with probability theory.

2.1 Random Variable and Probability Density

We assume that there is a certain prescription how to obtain a number &. This
prescription may consist for instance in the following experiments:

(i) tossing a coin and writing 0 for head and 1 for tail,
(i) casting a die and counting the number of spots,
(iii) measuring the length of a rod.

We call £ a random variable if the number ¢ cannot be predicted [for instance
because of lack of initial conditions and (or) of some other unknown factors]. By
repeating the experiment N times (N realizations) we obtain N numbers

&8 5 8N 2.1

These numbers &y may take only integer [cases (i), (ii)] or continuous [case (iii)]
values.

Instead of repeating the experiment with one system N times we may also
think that we have an ensemble of N identical systems and make one experiment
for every system.

Whereas the numbers ¢&;, & ... cannot be predicted, some averages for N— o
may be predicted and should give the same value for identical systems. The
simplest average value is the mean value

(&= lim (& + &t Ey). @.2)
N-ooo N
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A general average value is
F&Y= Tim L&) +... + &, @.3)
Noow N

where f(¢) is some arbitrary function.

Probability Density
If we choose for the function in (2.3) the shifted step function
f&) =6Kx-90) (2.4)
1 x>0
Ox)=< 1/2 for x=0 2.5
0 x<0
we obtain

P(<x)+ (/2P =x) = (O(x—C))
~ fim [@(—&)+...+ O —EN)/N = lim M/N.

The definition (2.6) differs from the usual one by a different weight of the prob-
ability at &£ = x. This is done because of our definition of the step function (2.5).
[If we would have used @(x) =1 for x =0 and ©(x) = 0 for x < 0 then the left
hand side should be replaced by P(¢ < x)]. For continuous processes, where the
probability to find the discrete value ¢ = x is usually zero, both definitions agree.

In (2.6) M is the number of experiments (realizations) where £ < x. Thus M/N
is the relative frequency where the random variable is equal to or less than x. In
the limit N — oo this relative frequency [2.1] is called the probability P(¢ = x) that
the random variable is equal to or less than x. It follows from (2.6) that P(£ = x)
must be a nondecreasing function in x with P(£ = o) =1. The probability
density function Wy(x) of the random variable £ is the derivative of P with
respect to x

Wf(x)—iP(c<x)—~<@(x &)

< O(x— é>—<5(x . 2.7

In (2.7) we introduced the Dirac & function as the derivative of the step function
(2.5). The probability dP to find the continuous stochastic variable ¢ in the
interval x = ¢ = x + dx is given by (assuming that P is differentiable)

Pl=x+dx)—P(=sx) =diP(é§x)dx= We(x)dx .
x
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The probability density (2.7) is usually a smooth function for continuous random
variables. For discrete random variables, P jumps at the discrete values x,, and
We(x) then consists of a sum of d functions

We(x) = Y ppd(x—x,) . (2.8)

In (2.8) p, is the probability to find the discrete value x,. By allowing J function
singularities for the probability density, we may formally treat the discrete case
by the same expressions as those for the continuous case.

In the mathematical literature P is called the distribution function, whereas in
the physical literature the probability density Wy(x) is often also called the distri-
bution function. We shall always use the probability density Wy(x) and not P in
our further considerations. For W:(x) we shall reserve the term distribution
function.

The statistical properties of the random variable & are completely determined
by the probability density, because any expectation value can be obtained from
We(x) by integration. This is seen as follows: because

f(&) = fx)d(x— &Hdx, (2.9)

we get by taking averages

(&) = Jfx)o(x—&Hdx)
= [f(x) (d(x—&)ydx
= [f(x) We(x)dx . (2.10)

The normalization requires [f(x) = 1]
[Wer)dx=1. (2.11)

Remark on the Notation

The stochastic variable was denoted by £, whereas the variable in the distribution
function was denoted by x. For those readers not yet very familiar with prob-
ability theory it is advisable to use different symbols for the stochastic variable
and for the corresponding variable in the distribution function. To avoid initial
confusion, this is done in this chapter and in the first part of Chap. 3, but later
on, to save letters, the same symbols are used for the stochastic variables and the
corresponding variables in the distribution function.

Transformation of a Random Variable

If we use the random variable

n=g() (2.12)
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instead of the random variable &, the probability density W,(») of the random
variable 7 is, according to (2.7, 10), given by

W) = (8(—m)) = (60 —g()>
=§6(y—g(x) Wex)dx. (2.13)

The last integral is easily evaluated. If g, '(y) is the nth simple root of
g(x)—y =0, then

W,0) = T Welgy "0 1dgx)/dx(17 xmx,=g710) (2.14)

from a well-known expression for the & function, see e.g. [2.7]. (Another
possibility to obtain (2.14) is by transformation of the differentials.)
As an example, we calculate from the one-dimensional Maxwell distribution

m mov?
exp{ — 2.15
27kT p< 2kT @1

the probability density of the energy

W)=

E=1mv*=g(v). (2.16)
Here we have

vy = gl_l(E) = +x|/2E/m
2 2

dg
do

= |mv,|=)/2mE .17
2

v=g7 {(E)
2

W(E) = m exp| — E ! + " exp| — E !
2nkT kT ) V2mE 2nkT kT ) |/2mE

1 E
_ . 2.18
|/nkTE eXp< kT> @18

2.2 Characteristic Function and Cumulants

The characteristic function Cg(u) is the average

Colu) = (™€) = fe ™ We(x)dx. (2-19)
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From this characteristic function we obtain the nth moment M, by differentia-
tion
1 d"Cu(u
M, qeny~ L 4"Cew)

2.20
i” du” ( )

u=0

Hence, the Taylor expansion of the characteristic function is given by the mo-
ments according to

Ceu) =1+ ;(iu)"M,,/n! . .21

If we know all the moments, we thus have the characteristic function. If x runs
from minus infinity to plus infinity the characteristic function (2.19) is the
Fourier transform of the probability density W;(x) and the probability density
We(x) is the inverse Fourier transform of the characteristic function C(u)

We(x) = 2n) 'fCou)e " du . (2-22)
Because the probability density W(x) must be positive [W(x) = 0], C,(¢) must
be a positive definite function, i.e., Cy(1) must for every n = 1 fulfill the relation

$ ¥ Celux—upara;=0. 2.23)
k=154

In (2.23) uy,...,u, is an arbitrary set of real numbers and ay,...,qa, is an
arbitrary set of complex numbers. One may show that every positive definite
function with the property C,(0) = 1 is a characteristic function, i.e., its Fourier
transform is positive, see for instance [Ref. 2.2, Chap. VII].

Cumulants

The cumulants K, or semi-invariants are defined by one of the relations

Coy=1+ % 49 M,,:exp< 5 (0" K,,>, (2.24)
n=1 n! n=1 n!
lncé(u)=1n<1+ SN M,,>= SO @.25)
n=1 n! n=1 n!

It follows from these relations that the first # cumulants can be expressed by the
first n moments and vice versa. These relations up to n = 4 read explicitly
Ky =M,

2.26
K,=M,— M} (2.26)
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Ky=M,;—3MM,+2M}

2.26
Ky=M,— 3M3}— 4M,M; + 12M3M, — 6 M1 (2.26)
M=K,
M,=K,+K?

2o .27)

M;=K; + 3KK, + K3
M,=K,+4K,K, +3K3+6K,K? + K?.
General expressions for the connection between cumulants and moments may be

found in [Ref. 2.4, p. 165]. A very convenient form in terms of determinants
reads

M, 1 0 0 0
M, M, 1 0 0
M; M, @MI 1 0
K,=(-)""! 3 3 (2.28)
M, M, M2 (5 M I
4 4 4
oo (s G ()
K, -1 0 0 0
K, K, -1 0 0
2
Ky (])K> K, -1 0 ...
M,= 3 3 (2.29)
P R S .
4 4 4
K;s <1>K4 <2> K, <3> K, K, ...

where the determinants ||, contain n rows and n columns and where

< " > = ———L——— are the binomial coefficients. These connections between
m (n—m)! m!

the expansion coefficients of (2.24 and 25) are found in [2.8]. [To obtain (2.28)
the ith row of the corresponding determinant in [2.8] has to be multiplied with
(i—1)! and the jth column with the exception of the first column has to be
divided by (j—2)!. For the derivation of (2.29) the ith row of the corresponding
determinant has to be multiplied with (i—1)! and the jth column has to be
divided by (j—1)!1].



2.3 Generalization to Several Random Variables 19

As seen from (2.26), the first cumulant is equal to the first moment and the
second cumulant is equal to the variance or mean-squared deviation

Ky=My—Mi=((£-<¢ENH 0. (2.30)

It is sometimes useful to consider probability densities where all cumulants with
the exception of the first two vanish. (It obviously does not make sense to
consider probability densities where all moments with the exception of the
first few vanish. It is immediately seen, for instance, that for M, +0,
M, =M;=... =0 relation (2.30) is violated and hence no positive probability
density is possible). We have

for K,=K3=...=0
Ce(u) =exp(iukKy); Welx)=6(x—K)) (2.31)
and for K3=K,=...=0, K,=%0

Ce(u) = exp(iuk;— %usz)
o (2.32)
Wex)= 2m) ™" | exp(—iux +iuk; - 1u’K,)du ‘

=(2nKy) " expl— L(x—K1)Y/K3] .

In the first case the probability density is a sharp distribution at Ky, whereas in
the last case it is a shifted Gaussian distribution with the mean value K 1 and
variance K,.

If the cumulants vanish at some higher order n = 3, i.e., K,*=0;K,,1=K,,»
=... =0, the probability density cannot be positive everywhere [2.9]. See also
the similar discussion in Sect. 4.3.

2.3 Generalization to Several Random Variables

Generally we may have r random variables &, &, ..., &,. As an example we may
consider r dice, where ¢; is the random variable corresponding to the ith die. By
making N experiments or realizations, for each random variable & we get N
numbers &1, &g, ..., &n. As in the case of one random variable we may take
averages of an arbitrary function f(&,, ..., &,) according to

Sy, &) =1$i£ré°% Vs &)+ f(Ens -, E)] (2.33)

Similarly to (2.7) we introduce the 7-dimensional distribution function

Weooe @t X)) = Wy, x) = (800 — &)...8(6,— &)y . (2.34)
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The index &, . .. , &, of the distribution function will be omitted, to be replaced by
the number r of variables. With the help of (2.34) the averages (2.33) can be cal-
culated by integration

Sl ey E)Y = g oo X) Wiy, - X)Xy dX 2.35)

It immediately follows from (2.34) that we obtain the probability density of the
first i < r random variables by integration over the other variables

WiXq, ... X)) = §o W00 ey Xy Xt -+ 5 XD AXpp 10 dX (2.36)

Similar to the one-variable case we may construct characteristic functions
C/uy, ..., u,) by the averages

Cr(ul’ ey ur) = <exp(iulél+ s +iurér)>
= ... fexpli(uxi+ ... +ux) Wilx, ... ,x)dxy...dx, (2.37)

from which any mixed moments can be obtained by differentiation

My, = (&8

n1 n,
= 8 8 C(uyy..-sU,)
diuy diu,

Thus the moments (2.38) are the expansion coefficients of the characteristic
function

(2.38)

u1=...:u,=0

C,(ul,...,u,)= Z Mn (iul)"l . (iu,)"’

. , (2.39)
Ryyeensy n! n,!

where we have to sum over all n,, ..., n,and where My o= 1. Because of (2.37)
the probability density W, is given by the inverse Fourier transform of the charac-
teristic function

Wixs, ..., x)=Qm) .. fexpl—i(uyxi+... +ux)]
X C (g, -, uy)duy...du, . (2.40)

If instead of the characteristic function in (2.38) we use its logarithm, we get the
cumulants or semi-invariants

3 \" 3 \"
K = InC.(uq, ..., 4
ny,...s n, <8iu1> <8iu,> r( 1 r)

For a general connection between these cumulants and the moments (2.38), see
[Ref. 2.4, p. 165].

(2.41)

u1=...=u,=0
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The characteristic function may therefore be expressed by the cumulants

.....

e
Cou...up=exp| T K, Q007 Qu)7T) (2.42)
Ry, ny! n,!

2.3.1 Conditional Probability Density

If we consider only those realizations of the r random variables &, ..., & where
the last r—1 random variables take the fixed values & =xp,..., &, =X,, we
obtain a certain probability density for the first random variable. This prob-
ability density is called conditional probability density and will be written as
P(xy|x...,%)).

Obviously the probability W,(xy,...,x,)dx;...dx, that the random variables
&({=1,...,r) are in the interval x;=¢& =<x;+dx; is the probability
P(xy|xy, ..., x.)dx; that the first variable is in the interval x; = £ < x; + dx; and
that the other variables have the sharp values &= x; (i =2, ..., r) times the prob-

ability W,_,(x, ...,Xx,)dx,...dx, that the last r—1 variables are in the interval
x;=&=sx;+dx;(i=2,...,r), i.e., we have
W X1y .oy X) =Py |X0, s X)W (X2 .00 X)) (2.43)

Because W,_, follows from W, (2.36), we may express the conditional prob-
ability density by W,

Wixg, ... X,)

P(xylxy ..., x,) =
W _1(x ... ,X,)

_ Wy, ..x) . (2.44)

S I’V,(Xj, e ,X,) dxl

Especially for two random variables the conditional probability density in terms
of W, which is called the joint probability density, reads

P(xy|x2) = Walxy, Xp) / §W (x4, x,) dxy (2.45)

2.3.2 Cross Correlation

It may happen that the conditional probability density (2.45) does not depend on
the value x, of the other random variable &,. In that case we say that the random
variables &, and &, are uncorrelated. It then follows from (2.45)

Wa(x1,x3) = P(xy) § Wa(xy, x5) dxy
= W) - WP(xy), (2.46)
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i.e., in that case the probability density W, decomposes into a product of two
probability densities W.

In the other extreme, if & is a function of &, i.e., & = f(&;), the random
variable & is completely determined by the random variable &, and the prob-
ability density has the sharp value

P(x1]xz) = 60x;— f(x2)) (2.47)
and the joint probability density reads
Wa(xy, x2) = 0(x1 —f(x2)) Wi(x2) (2.48)

Between these two extreme cases there may be intermediate cases, where the two
random variables are partially correlated. For uncorrelated random variables,
where the joint probability factorizes (2.46), the cross-correlation coefficient

k&1, &) = (616> — (&)< (2.49)

is obviously zero. The following correlation coefficient

_ (EL & — (&Y (2.50)
V<& — <& 1/ (&3 — (&Y

measures the degree of correlation. One may easily show [Ref. 2.3, Vol. [, p. 276]
that |[R | < 1. R is equal to +1 for linearly dependent random variables, i.e.,

& =xab&+ b a>0.y (2.51)

If W, factorizes, R is zero. The reverse, however, is not true, i.e, R = 0 does not
imply that W, factorizes. One may even construct examples where (2.48) is valid
but where, with a suitable f(x), the correlation coefficient (2.50) vanishes [Ref.
2.3, Vol. I, p. 236]. The cumulant (2.41) for two variables with n; =n,=1is
identical to the correlation function (2.49).

In the general case we may consider the correlation coefficient (2.41) with
n=...=n-=1

_ 3'InC(uy, ..., u,)
aiu1...8iu, u=...=u =0

r

k(&1 .- &) =Ky, 1 (2.52)

This coefficient not only vanishes if all random variables are independent, i.e.,
the probability distribution factorizes according to

Wiy, - .. X)) = Wi(x)... W (x,) . (2.53)

(The upper index in W, indicates different distribution functions.) It also
vanishes if any one of the random variables, for instance the first, is independent
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from the other variables (the others need not be independent), i.e., it vanishes if
the probability density factorizes according to

WXt ..., x) = W) Wi 1(xy, ..., X,) (2.54)

This is easily seen as follows. Because the characteristic function C, then also
factorizes

Crugy ..., u,)=CW)Co_1(un, ..., u,), (2.54a)
(2.52) must therefore be zero for r = 2.

If all the cumulants (2.41) for n; =1, n,=1,..., n,=2 1 vanish, the charac-
teristic function C, and hence also the probability density W, factorize.

2.3.3 Gaussian Distribution
Next we consider only those probability densities where all cumulants (2.41)
except those with ny+n,+...+#n,=<2 vanish. We then must have
LA 1 L ..
Cuy,...,u)=exp| Yajiuj+— ¥ opiuiug). (2.55)
i=1 2 k=1
It follows from (2.38) that the first two moments are given by
& =a;, (2.56)
<éj£k> = Ojta;ay. (257)

Equations (2.56, 57) imply that the variance (j = k) and the covariance (j + k)
read

E— N (&— &)y = gy (2.58)

The probability density is the inverse Fourier transform of the characteristic
function (2.59), i.e.,

T

_, r 1
Wixt, ..., x)=Q2n)~"§... jexp{ .Zl(aj—xj)luj— > 1ajkujuk]
J= Js

X duy...du,. (2.59)

The matrix gj = gy; is assumed to be positive definite. Then the inverse matrix
(a_l)jk=(a_1)kj and its square root (al/z)jk= (al/z)kj, as well as its inverse
square root (g~ 1/2) 4 = (67 "2)y;, exist. (The square root of ¢ may be uniquely
defined in such a way that it has positive eigenvalues.) To calculate the integral
we introduce as integration variables
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4=% (o) ur+i(a™ D)l —a] - (2.60)
We may then write the exponential in (2.59) as

[1= - 1 ¥ o0 — 1 ) (0™ Ybxj—ap) (e —ay) - (2.61)
2 J 2 jk

Because of the Jacobian

duy...du, (doy...de,
du1...du,

-1
> = [Det(a'?)] 7"

dey...da,

= (Det ajk) ~172 N

o r
ajaj> dey...da, = < § e“"z/zda>
1 —

- (Zn)r/z ,

and because of

S...Sexp<—%j

I~

we get as the final result for the probability density the general Gaussian distribu-
tion

W,(xy, ..., x) = (2m)""*(Detay)

X ex;{— %z (a‘l)jk(xj—aj)(xk—ak)] (2.62)

Jsk

The characteristic function for the random variables
n=&—a (2.63)

is given by (2.55) with @; = 0. One may then derive from this characteristic func-
tion the moments

Njy My Mjp g =0 (2.64)

MjiMjy - Mjp,) = IZJ: Ok by Thes, kg =+ Ohgy_ 1,k 0
d

where we have to sum over only those (2x)!/(2"n!) permutations (J;...Jj2,) =

(k1, ..., ky,) which lead to different expressions for Gy, k... 0Ok,, .k, Inter-

changing the indices of each individual g (2" possibilities) as well as interchanging

pairs of indices of different a(n! possibilities) does not lead to different expres-

sions. For n = 2 for instance, we have

(MmN = O30+ 0w Gt G0 - (2.65)
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Linear Transformation of Variables

It follows from (2.62) that a linear transformation of the stochastic variables,
i.e.,

&= Lo+ b,
J

leads again to a Gaussian distribution for the probability density in the trans-
formed variables.

2.4 Time-Dependent Random Variables

We now consider a random variable & which depends on the time ¢, i.e., & = £(¢).
Here we assume that we have an ensemble of systems and that each system leads
to a number ¢ which depends on time. This number ¢ of one system (one
realization) may look like the curve in Fig. 2.1.

Though the outcome for one system cannot be precisely predicted, we assume
that ensemble averages exist and that these averages can be calculated. For the
fixed time ¢ = ¢; we may therefore define a probability density by

Wi (xy, £) = (O(x1— &(1))) - (2.66)
The bracket { ) indicates the ensemble average. The probability to find the
random variable &(#) in the interval x; < &(¢#)) =x;+dx; is then given by
Wi(x,, t)dx,. Next we define the probability that £(#,) is in the interval x; =< £(¢)
= x; + dxy, £(1,) is in the interval x, < &(¢,) =X, + dx,, ..., and that £(¢,) is in
the interval x, < &(¢,) < x,, + dx,. This probability may be written as

Woxpsts -3 X, £)dXy. . dX,,

where the probability density W, is given by

Wn(xnr tn; ey Xps tl) = (5()(1 - é(tl)) s 5()(,,— é(tn))> . (2663)

g(t)

t //\\w/\)/ t

b, N~ g

Fig. 2.1. A realization of the stochastic variable £(¢)
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If we know the infinite hierarchy of probability densities

M(Xh tl)

Wa(xy, £ X1, 1) (2.67)

Wi(x3, £33 X2, 123 X15 1)

for every ¢; in the interval fo=t; = fo+ T, We know completely the time depen-
dence of the process described by the random variable &(¢) in the interval
[fo, to+ T1. With the probability density (2.66a) we obtain any averages by integ-
ration. The correlation function (&(¢) &(¢')), for instance, is given by

CE() E(t)) = §§xaxs Walxa, £y x4, 1) dxadxy (2.68)

Because of (2.36) we obtain probability densities with lower number of variables
from those with higher numbers by integration.

Stationary Processes

If the probability densities (2.67) are not changed be replacing ¢; by t;+T
(T arbitrary) we call the process stationary. It then follows that W does not
depend on ¢ and that W; can depend only on the time difference £, 1.

2.4.1 Classification of Stochastic Processes

As in Sect. 2.3.1, we may define a conditional probability density as the prob-
ability density of the random variable ¢ at time ¢, under the condition that the
random variable at the time f,_; <1, has the sharp value Xx,_;; at the time
t,_» <t,_1 has the sharp value x,_»,...; and at the time # < f; has the sharp
value x;:

Pt bl Xuototn_t13-- -3 X1, 1) = (3, — &(20))) |5(t,,_1)=x,,,1 ..... Ht)=xy

t,>t,_1>...> 1. (2.69)

In accordance with (2.44) we may express the conditional probability density by
W, in the following way:

W, (Xps s+ -3 X1, 11)

Py tn|Xn_1stnotse- 53X, 81) =
Wnﬂl(xn—l’tn—l; vee ;X1,f1)

— Wn(xmtn;---;xlatl)
S Wn(xm tn; s X1, tl)dxn

(2.70)
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Following Wang and Uhlenbeck [1.7], we now classify the processes describ-
ed by the random variable ¢ as follows.

a) Purely Random Processes

We call the process a purely random process if the conditional probability density
P, (n = 2 arbitrary) does not depend on the values x; = £(¢;) ({ < n) of the random
variable at earlier times ¢; < £,

Pty |Xp_ 1o ty13 .5 X1,8) = P(Xp, 1) - 2.71)
It then follows that
Wn(xm tn; e ;xl’ tl) = P(xm tn) Wn—l(xn—la tn—l; .. .;X1, tl) ’

or if we apply the same argument to W,_; and so forth that the probability
density W, factorizes

WoXps by -« -3 X1, 81) = P(Xp, 8) .. . P(X1,81) . (2.72)

Thus the complete information of the process is contained in P(x,t;) =
I/Vl (1, 11).

For the physical systems where the random variable £(¢) is a continuous func-
tion of time (Fig. 2.1), the random variable at two arbitrary close times #, and
t,—e¢, i.e., &(t,) and &(f,—¢€), must have some correlation and the probability
densities therefore cannot factorize. Thus a purely random process cannot
describe physical systems where the random variable is a continuous function of
time.

b) Markov Processes

For Markov processes, the conditional probability density depends only on the
value &(¢,_1) = x,_1 at the next earlier time but not on &(¢,_,) = x,_» and so
on, i.e.,

Pty Xn—tstn_13 -3 X1,81) = PXpy ty|Xn_1, tn_y) - 2.73)
It then follows from (2.70) that

Wn(xm tn; v ;X1,f1) = P(xm tn |xn—1’ tn—l) VVn—l(xn—l’tn—l; . ';xl’tl) ’

or if we use the same argument for W,_, and so on we may express W, by a
product of conditional probabilities and W,

Wn(xn, tn; cees Xqy tl) = P(xm tn Ixn—l’ tnAl)P(xn—l’ tn*llxn—Za tn—Z)

o PO, by, 1) W4, 1) - (2.74)
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Because of this relation, the conditional probabilities are also called transition
probabilities.
For n =2 (2.70) specializes to

Walep ty X, 1) _ Walxa X1, 1)

. @.75)
Wi(x1, t) § Walxa, 1y x4, t1) dx,

P(X2, t2 lea ti) =

Thus for a Markov process the infinite hierarchy (2.67), i.e., the complete infor-
mation about the process, is contained in W,(x,, f2; X1, #1).

We may interpret (2.71, 73) as follows: whereas for a purely random process
there is no memory of values of the random variable at any preceding time, for a
Markov process there is only a memory of the value of the random variable for
the latest time, where we measured ¢ The time difference #,— ¢, of the condi-
tional probability P(x,, t; | x1, #1) of a Markov process is arbitrary. If the time dif-
ference is large, the dependence of P on x; will be small (i.e., the memory of the
value of the random variable is nearly lost). If, on the other hand, the time differ-
ence is infinitesimally small, the conditional probability will have the sharp value
X1, 1.€.,

limP(Xz, t2|x1, t1) = 5(X1—X2) . (276)

L=

¢) General Processes

Next one may consider processes where the conditional probability density
depends only on the values of the random variable at the two latest times. In this
case the complete information about the process is contained in W;. Hence we
may continue, i.e, we may have processes where the complete information is con-
tained in W, and so on. Due to Wang Uhlenbeck [1.7], however, this further clas-
sification is not suitable to describe non-Markovian processes, i.e., processes
where the complete information is not contained in W,. For non-Markovian pro-
cesses one may take into account besides £(¢) = & (¢) more random variables
&), .., E(t). By a proper choice of these additional variables one may then
have a Markov process for the r random variables. (Several time-dependent
variables are discussed in Sect. 2.5.) Another possibility is the following. As
shown in Chap. 4, the equation of motion of the probability density for con-
tinuous Markov processes is the Fokker-Planck equation (1.15). For non-
Markovian processes one may then use generalized Fokker-Planck equations
(1.26, 27) which contain a memory function.

2.4.2 Chapman-Kolmoegorov Equation

The probability density W, is obtained from W; by integrating over one coor-
dinate. Thus we have

Wi (s, 133 X1, 1) = { W3 (x3, 13520, 1 X1, 1) d Xy Q.77
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P Fig. 2.2. Transition probabilities at times ¢, and

X t3, with sharp initial value at time #;. For two
typical values the transition probabilities at #,
which start at £, with a sharp value, are shown by
a broken line. Two typical realizations of the
stochastic variable &(¢) are also indicated

For a Markov process we may write (2.77) in the form [see (2.74)] (assuming
Lzhzt)

P(x3, 13 )x1,10) Wi (xy, 1) = [P(x3, 13)x2, 22) POty 1 x4, 11) Wi (x1, 1) d Xy
Because W;(xy,t,) is arbitrary, we obtain the Chapman-Kolmogorov equation

P, 13)x1, 1) = §P(X3, 13[X2, 1) P(x2, B2 |Xy, 1) d X - (2.78)
Equation (2.78) may be interpreted in the following way. The transition prob-
ability from x; at time #; to x; at time #; is the same as the transition probability
from x; at time ¢, to x, at time ¢, times the transition probability from x; at time 7,
to X3 at time #; for all possible x; (Fig. 2.2).

2.4.3 Wiener-Khintchine Theorem

Instead of the random variable £(f) we may consider its Fourier transform
Ew)= [e@gnydr, (2.79)

which is also a random variable. For stationary processes the Wiener-Khintchine
theorem expresses the correlation function (&(w)&*(w’)) of the Fourier trans-
form of the random variable £(f) by the correlation function (£(#)£*(z")) of the
random variable itself. (Here we take into account that the stochastic variable
may have complex values.) Inserting (2.79) gives

(E) &)y = [fe i@ a@ err)ydedr . (2.80)
For stationary processes (£(¢) £*(¢')) is only a function of the difference ¢ —1¢',

i.e.,

(E(@)EX(@')) = (L—1")E*(0)) . (2.81)
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Introducing the new variables

T=1r-1t'
to=({'+1)/2,

(2.82)
we have

E@) @) = | ey | e O E@En Oy, @289
The first integral is the ¢ function

2nd(w-w') = Te‘“w—w%dto. (2.84)

In the other integral we may therefore put w = w’ and thus finally obtain

(E(w) E¥(w")) = 1 (w— ') S(w) (2.85)
S(w) =2 | e U ED) EX0)ydr. (2.86)

Here S(w) is called the spectral density. Thus the Wiener-Khintchine theorem
states that the spectral density is the Fourier transform of the correlation
function for stationary processes.

Remarks on the Spectral Density

The field strength E(¢) in an optical wave may be considered as a random
variable. If such a wave goes through a prism, the prism separates the different
Fourier components E (w) of the incoming wave, and the intensity measured in a
spectrometer is then given by E(w)E*(w). For stationary processes (infinitely
long observation) this intensity is infinite [w = @' in (2.85)]. For large but finite
observation times 7 the intensity is given by the spectral density S(w) (2.86) times
the observation time T (method of Rice [2.10], see also Sect. 3.2.3).

2.5 Several Time-Dependent Random Variables

The generalization to r time-dependent random variables & (¢), ..., &.(¢) is rather
obvious and will now be discussed briefly. The probability density for the r
variables at the » times ¢,,. .., ¢, is defined by

W,odP, . x s xD X )

= (SO = E (1)) ... S — ELt ). - OV = & (1)) ... 6D = (1)) -
(2.87)
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In (2.87) we wrote the index i of the times ¢;as upper indices (in parenthesis to the
variables x{"...x").

For a Markov process the complete information is contained in the prob-
ability density for two times

WoXis. s XpliX], .., X\ 1").

The conditional probability
Wo(X1s oo s X X 50y X[ t")
§oo §Waxys . xn tx0, .0y X0, ) dxy . dx,
(2.88)

P(xyy. ., xpt|xf,...,x, ") =

then obeys the Chapman-Kolmogorov equation (1 >¢'>¢'")

PpyeeosXptx{seo x5ty =50 S POy X X, X, 2

XP|, ..., xtt |x{'y...,xtt")ydx{...dx] .
(2.89)

If we eliminate one or more variables by integration, the remaining joint prob-
ability W, may no longer give us the complete information of process, i.e, for the
reduced number of variables we may no longer have a Markov process. If for
instance W$P(x,x,, £; X{,x3, ') is the two-times joint probability density describ-
ing the Markov process in the two random variables &,(¢) and &,(¢), the two-
times joint probability density of the random variable &,(¢) alone, i.e.,

WP e, tx], 1) = [§ WP e, X, ;X1 , x5, 1) dxpdxy (2.90)

will generally not contain the complete information for the random variable

&1(0).



3. Langevin Equations

We first investigate the solution of the Langevin equation for Brownian motion.
In Sect. 3.2 we treat a system of linear Langevin equations, followed in Sects.
3.3, 4 by general nonlinear Langevin equations.

3.1 Langevin Equation for Brownian Motion

We first look for solutions of the Langevin equation, see (1.7),
v+yo=I(), 3.1

where I'(¢) is a Langevin force with zero mean and with a correlation function
which is proportional to a § function

(r@)y=0, IOIE)) =qét-t). (3.2

The spectral density S(w) of the Langevin force, which by the Wiener-
Khintchine theorem (2.86) is the Fourier transform of the correlation function
(3.2), is independent of the frequency w:

S(w)=2 °§° e~ (r)dr=2q. (3.3)

Therefore the Langevin force (3.2) with a correlation is called white-noise
force. In general, the spectral density would depend on w and the noise is then
termed colored noise. Because of the linearity of (3.1) it is sufficient to know the
two-time correlation (3.2) of the Langevin force to calculate the two-time cor-
relation function (v (#;)v(f,)) of the velocity. If one is interested in multitime
correlation functions of the form (v(#y)v(tx)v(t3)...) [or if (3.1) were non-
linear], one has to know multitime correlation functions of the Langevin force.
Here we assume that the random variables &; = I'(¢;) are distributed according to
the Gaussian distribution function (2.62) with zero mean. It then follows, see
(2.64), that higher correlation functions are given by
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T (ty)... I(t2y-1)) =0
(3.4)

I I(t).. . I'(ty)) = qn[g Oty —t,)0(ty,—t;)... (¢, — fiz,,)} )
d

where the sum has to be performed over those (2#)!/(2"n!) permutations which
lead to different expressions for d(#;, —#,,)...6(¢;,, ,—¢;, ) [see (2.64)]. In partic-
ular for n = 2 we have

(@) I(5)I(t3)) =0
3.5)

(T T T(t3) T(1)) = g[8t = 1) 6(13— 14) + 6(t1— 13) 612 )
+0(h—t) o(H— 1)) .
It should be noted that for singular correlation functions like (3.4, 5) the distribu-

tion function makes sense only, if the o are finite and if the limit o;— 0 is con-
sidered. We may use for instance the representation of the J function

1 € &

£
J.(t)= 3.6
) 0, elsewhere 36

in (3.4, 5) and then take the limit £ - 0.

We now want to solve (3.1) for the initial condition that at time ¢ = 0 the
stochastic variable v has the sharp value v,. For this initial condition the solution
of (3.1) reads

t
v(t) = voe '+ fe T P(eyde . 3.7
0

By using (3.2) we obtain for the correlation function of the velocity
(1) v(ty)) = vge 7t

Hit , ,
+ ) fe ittt Ba st —t))de{dd) . (3.8)
00

To calculate the double integral, we integrate over ¢; first. The integration over
t1 then runs only from O to £, or ¢, whatever is less (Fig. 3.1). We therefore have

Ht min(t,1,)
[§...dgdyy=q [ e ?r-2gy
00 0

= _q_(e—}’|11—f2|_ e ity
2y
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Fig. 3.1. Region of integration of the integral in (3.8) for

t2
# z t,. The integrand is different from zero only on the
line #4 = #
i

t

It is easily seen that (3.8) does not change by interchanging #y and #,. Thus the
final result for the velocity correlation function is given by

(v(tl)v(tz)) — v(z)e—}’(f1+fz)+ _q_(e—}’m—fz\ _ e—V(11+’2)) . (3.9)
2y

For large #; and 1,, i.e., yt; > 1, yt, > 1, the velocity correlation function is in-

dependent of the initial velocity v, and is only a function of the time difference
H— 1y, i.e. s

(0(t)v(ty)) = —Le 70l (3.10)
2y
In the stationary state the average energy of the Brownian particle is therefore

given by

1 1 q
E = t 2 = M— 3.11
(E) 2m([v()]> 2m2y (3.11)

As mentioned in the introduction, the constant g is determined so that the

average energy is given according to the equipartition law of classical statistical
mechanics by

(E)=1kT. (3.12)
Hence we obtain for the constant g in (3.2)

g=2ykT/m. (3.13)

3.1.1 Mean-Squared Displacement

For the Brownian motion of a particle it is difficult to measure the velocity cor-
relation function (3.9). It is much easier to measure the mean-square value of its
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displacement. If we assume that the particle starts at time 7 = 0 at x = x,, with the
velocity v = vy, the mean-square value of its displacement at time 7 is given by

t 2 t t
(Ee() = X)) =<D)U(t1)df1} >=<(j)v(t1)dtl(§)v(t2)dt>

tt
= (5)(5)(”(11)1’(?2))(1’1%- (3.1%)

Here (v(t;)v(2;)) is the velocity correlation (3.9). Because

tt it 1—e 2
fle 7 2dydy,=(——— | (3.15)
00 y

¢t t I
ffe-7i-fldy dey = 2{dey fe 71D dy,
00 0 0
=it_i2(1_e*w), (3.16)
14
we obtain
_e~ Y2
) -xp)?y = (03— A VU= T 4, 9 q_emy (3.17)
2y) v Y Y

Were we to start not with the sharp velocity v, but with an initial velocity distri-
bution for the stationary state, the average square of the velocity is equal to
(v%) = q/(27), see (3.11), and the first term on the right-hand side of (3.17)
would vanish. For very large ¢ (y¢ > 1) the leading term in (3.17) for both cases is

((x(1)— X)) = 2Dt (3.18)
with
q kT
=_4 - 3.19
597 my (3.19)

The last relation is the well-known Einstein result [1.4] for the diffusion con-
stant D.

If one is interested only in this large time limit one may derive (3.18) in a
shorter way. By neglecting the time derivative in (3.1) we obtain

(0(1) 0 (1)) z—)}%(F(H)F(fz)) - —y‘%a(n—tz). (3.20)
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Insertion of this expression in (3.14) leads immediately to (3.18, 19), i.e.,

() — X)) ~ 4 ta(zi—z ydt dt, = 4,
0 ’}72 gg 2 1 '}’2

If we think of the Langevin force as a successive number of peaked functions
with nearly zero width and nearly infinite height, the velocity then consists of a
successive number of peaked functions with width ~y and height ~ y~ L
Neglecting the time derivative in (3.1) is therefore equivalent to replacing the
peaked functions with width y by peaked functions with nearly zero width in the
velocity. If we are interested only in the slow motion of (3.14) this replacement

therefore leads to the same result.

3.1.2 Three-Dimensional Case

In three dimensions we have for each velocity component v; an equation of type
(3.1), i.e.,

i)i= —yU,+E(t); i=1)2,3' (3'21)

The correlation of the Langevin forces between different components is zero for
the isotropic case. Thus we have

(L)Y =035 (TUNT; (1)) = g8;0(~1"). (3.22)

Here again g is given by (3.13). Because the different components in (3.21) are
not coupled we can immediately apply the result for the one-dimensional case
and obtain for the mean (average) energy in the stationary state

1 2 32 1 q 3
E=—m@y=—mY{(viy=—m-3—=—kT. 3.23
2 g 2 2y 2 629

1
2 =1
The mean-squared displacement for large times reads

3
(@030 = £ =50 =1, (3.29

3.1.3 Calculation of the Stationary Velocity Distribution Function

To obtain the velocity distribution function we may first calculate all the
moments (v>"), from which we get the characteristic function (2.21), whose
Fourier transform is the distribution function (2.22). As shown in Chap. 4,
however, the distribution function can be calculated in a much simpler way with
the help of the Fokker-Planck equation.
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In the stationary state, i.e., for large times, (3.7) specializes to
v(t)=fe 7"I(t—r1)dr. (3.25)
0

To derive (3.25) from (3.7) t—t' = ¢ was substituted, and then the range of
integration was extended to infinity because of the factor exp(— y¢). By using
(3.4) we obtain

(@ =0, (3.26)

o

(o) = of . (j)e‘y<’1+--~+’2n><r(t— 71)...[(t—Ty))d1y...d1),
0

Cn)! | T+ "
=~ |3 1e qd(ri—1)drdn| . (3.27)
The double integral is equal to (v*) = g/(2y) giving
¢ 2ny _ (2n)! q " 308
(U() >_ 2nn! z—y . ( . )

The characteristic function (2.21) becomes
Cu)y=1+ § iuw)v(@®)"y/n!
n=1

= ([{iu)*"(v ()"

n=0 (2)’!)!
s \2n n 2. \"
® (u * 1 u
=y (n) A Yy — _44q
n=0 2"n! \ 2y n=0 n! 4y
2
=exp<__“ ‘1> (329
4y

and the distribution function is therefore given by

W) = (5((t)—v)) = ?1_ T cwye du
T -

oo 2
- b ) exp<—iuv—ﬂ—> du (3.30)

y yv? m muv?
e exp| — ,
nq q 2nkT 2kT

I
o
>

ko
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i.e., the stationary distribution is the Maxwell distribution. Here we have
denoted the stochastic variable by v(#) and the corresponding variable in the dis-
tribution function by v (see also notation remark, page 15).

Because (3.25) is a linear transformation of I'(¢') into v(¢), it follows already
from the remark concerning linear transformation of variables (Sect. 2.3.3) that
v(¢) must be Gaussian distributed because I'(t) is Gaussian distributed.

3.2 Ornstein-Uhlenbeck Process

A Langevin equation of the type
. N ) .
éi"'.ElYijéj:Fi(t); i=1,...,N (3.31)
j=

with J-correlated Gaussian distributed Langevin forces
(I()Y=0, (LIt =q;60¢-t"), q;=4q; (3.32)

describes a process which is called an Ornstein-Uhlenbeck [1.5, 7] process. The
essential feature is that the homogeneous equations are linear und that the coef-
ficients g;; describing the strength of the noise do not depend on the variables .
The Langevin equation (3.1) for Brownian motion is obviously the simplest form
(N =1) of (3.31).

It should be noted that with a vanishing matrix y;; (y; = 0) the process describ-
ed by (3.31, 32) is called a Wiener process.

We now want to find a solution of (3.31) with the initial condition describing
a sharp value at ¢ =0:

§i(0) = x;. (3.33)

We first look for the homogeneous solution of (3.31) with the initial condition
(3.33). This solution may be written in the form

&) = Gy(t)x;, (3.34)
where the Green’s function has to satisfy the initial condition

From (3.34) onwards in this section Einstein’s summation convention is used,
i.e., the summation is performed over indices appearing twice in the equations
without writing down the summation sign. Obviously Green’s function must
satisfy the system of differential equations

G+ vuGij=0. (3.36)
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A formal solution of (3.36) reads in matrix notation
G(t)=exp(—pt)=1—ypt+ L1y’ +..., (3.37)
where the matrix elements of y and G are given by y;; and G, respectively.
For the inhomogeneous solution we make the ansatz (method of variation of
the constant)
() = Gyt ei(1) (3.38)
which leads to
Gi(t)c;(t) = I'(1). (3.39)
Because the inverse of the matrix G (3.37) may be expressed by

G 'H)=G(-1), (3.40)

(the Green’s function can be defined for positive as well as for negative times),
and because

GG ()=GWG(-t")=G(-1"), (3.41)

we finally obtain for the inhomogeneous solution with the initial value £"*(0) = 0
. t
& = [Gy (e~

Gy(t")I(t—1")dt . (3.42)

O ey s

Therefore the general solution of (3.31) with the initial condition (3.33) is
given by

. t
&) = B+ E™ () = Gy x;+ (S)Gij(t')l}(t—t')dt’ . (3.43)

3.2.1 Calculation of Moments

Using (3.32) the following results are derived from (3.43) for the first moment
and the variance

Mi(t) = (&()) = G (D) x;, (3.44)
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o (t) = a;i(t) = (&) — &&= GO

tt
= ggGik(t{)st(tz’)qkSJ(t{ - t3)dt{dsg

O ey

Gu(t')Gs(t')dt' gy . (3.45)

We observe that g;; obeys the relation
Gjj= — YOkj— VikOkit qij - (3.46)

This may be seen by differentiating (3.45) and by using (3.36)

0= Gy(t) Gj5(1) Gis »

g;= G GjsQis+ GiijslIks = —VuGwGjsqiks— G Vi1Gslks »
i.e., we have

gj=— YuOy— ijf'Tzi-
Integrating the last equation from zero to time #, we obtain (3.46) because
7;(0) = g; and ¢;;(0) = 0.

If the real parts of the eigenvalues of the matrix y; are larger than zero the
Green’s function Gy(¢) vanishes for large times t, giving

0,() = ZGik(t)st(t)dtqks. (3.47)

Using (3.37), we get from (3.44, 45) for small times t z 0
M(1) = CELD)Y = Xi— Yyt + S Varigxt’E . (3.48)
g;(t) = gyt — S (Vadii+ Vi) 2 E e (3.49)

Thus for small times the matrix y; determines the motion of the first moment
whereas the matrix g; determines the motion of the variance. For a one-dimen-
sional diffusion process the variance {[&(f) — (&(¢))]%) is proportional to the
time, where the proportionality constant is the diffusion coefficient. For a
general Ornstein-Uhlenbeck process, in addition to the mean motion described
by (3.44) there is a diffusion process which for small times is given by the matrix
q;- For a Wiener process (y5=0), G;(t) = and we obtain

g;(t) =gyt for ;=0 (3.50)

for all times ¢ = 0.
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For later purposes it is mentioned that the higher central moments, defined by
Giyooi () = <& (D) = <&, O] . [&, () = <& (O], (3.51)
vanish for all odd 7 (3.4), and that they are proportional to ™2 for small times
for even n. For one variable, for instance for #n = 4 for small times,
2 ttitt
o111 = g*[ [ [ J[6(t1— 1) 6(t3— 1)
0000

+ 8(t = 13) 8(t,— ts) + 6(t1— 13) 8(t,— t3)) At dt,dtsd 1ty
=3q%t2. , (3.52)

3.2.2 Correlation Function

One of the simplest two-time correlation functions is given by
Kj(r, 1) =&t + 1) (1)) - (3.53)

If we start with the initial value &,(¢) at time ¢, the formal solution of (3.31) reads,
compare (3.43),

E(t+ 1) = Gu(T) E(1) + tJj:rG,-J-(t— vyry¢)dr'; t=0. (3.54)
t

If we insert this expression into (3.53) and take the average, the term containing
the Langevin force drops out and we obtain for '

=0

Kij(r, 1) = (&i(t+ 1) §;(2))
= Gs(1) (&) £;(2)) = Gis(1) K (0, 1) . (3.55a)

Equation (3.55a) is called a regression theorem. It states that the two-time cor-
relation function (£(#+17)¢£;(¢)) can be obtained from the one-time matrix

(&i(1) £;(¢)> by matrix multiplication with the Green’s function of the noise-free
equation (3.36). For

7=0

Kij(t,1) = &t = [t & — |7+ |7]))

=G|t <&t = TN &= 7))
= Gj(|t) Kis (0,2~ | 7)) . (3.55b)
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Correlation Function for the Stationary State

If the eigenvalues of the evolution matrix y; are all larger than zero, a stationary
solution exists. One can then take the limit #— oo and thus obtain the correlation
function K;(t) = K;(t, ) in the stationary state for

=20

Kij(7) = Gis(1) (£(0) £;()) = Gis(1) 05() (3.562)
and for
=0

K (1) = Gjs((|7]) (£i() &()) = Gl |]) 035(o0)

= Gjs(|7]) a,i()
= Kji(|z]) . (3.56b)
Thus for all T
Kij(t)=K;(—1), (3.57)

which generally holds for every stationary process. [For a stationary process,
(3.53) does not depend on ¢. Replacing ¢ by #— 7 in (3.53) leads to (3.57)].

3.2.3 Solution by Fourier Transformation

Introducing the Fourier transform of the stochastic variables &; and of the
Langevin forces [

E(w) = | e ryde
- (3.58)
Fw)= [e ' Iy(ndt

we immediately obtain the Fourier transform of the inhomogeneous solution of
(3.31). Because

3‘0 e—iwté'j(t)dt - e_iwtéj(t)_T + le? e_iwtéj(t)dt s

then (neglecting the terms at # = + o)
( @3+ 7;x) (@) = T{(w),
i.e.,

E(w)=(p+ioDy' Tiw) . (3.59)
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We now introduce the spectral density matrices of the stochastic variables and
Langevin forces [cf. (2.85)]

Ew) & (W)Y = 1S (w) dw— w')

- - (3.60)
(M) (') = S (w) (w-w').
In consequence of (3.59) both spectral densities are connected by
SP(w) = (y+ioD; ' (y—iwDg' S{P(w). (3.61)

The spectral density of the J-correlated Langevin force (3.32) is, using (2.86),
S(w) =2qj . (3.62)

Therefore we finally obtain for the spectral density matrix of the stochastic
variables

S (@) =20 +iwh;' (y-iwDi' gy (3.63)
This Fourier transformation method for obtaining the spectral density is some-
times called Rice’s method [2.10].

From the Wiener-Khintchine theorem [see (2.86) for the case of one variable]

the spectral density is the Fourier transform of the correlation matrix in the sta-
tionary state (3.56a, b)

Si(w)=2 | Ky(r)e "“"dr

=2 [Ky(r)e “Tdr+2 [ K (1) eldt
0 0
=2(y+ioD); ' og() + 2(y—iwl)i' oy() . (3.64)

In deriving (3.64) we used the formal solution (3.37) and

ngk(T) eiiwrdT — g[e—(yxiwl)t]jkdr
=(yTioDy'. (3.65)

To see whether (3.64 and 63) are equivalent, on the right-hand side of (3.63) we
introduce for g,; the expression

Grn = Vrs05(®) + y;05(®) , (3.66)

which follows from (3.46) for the stationary state. Thus the right-hand side of
(3.63) becomes
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ths (3.63) = 2(p+iwl);; ' 750a() (y—iwDi'
+2(+ioD; (y-iwDi 1s0.() .

Because
(yriol) 'y=I% io(ytiol)™!
then

rhs (3.63) = 20]-,(00)(;'—iwl),;,1 + 2(y+iwI)j;1ak,(0°)
—2io(y+iol); o) (y-iwDg'

+2io(y+iol); o.(®) (y—ioDi' -

By changing indices and using the symmetry relation (3.45), it is easily seen that
the last two terms cancel and that the first two terms agree with the right-hand
side of (3.64).

Finally I want to remark that the general solution (3.61) [as well as (3.43)] is
valid for arbitrary spectral densities S ,-S-D(w), i.e., for arbitrary correlation
matrices (I (#) [(t')) = f{t—1').

3.3 Nonlinear Langevin Equation, One Variable

For one stochastic variable &, the general Langevin equation has the form

E=h( 1) +g(& ) T() . (3.67)

The Langevin force I'(¢) is again assumed to be a Gaussian random variable with
zero mean and ¢ correlation function (3.2). The constant g in (3.2) describing the
noise strength may be absorbed into the function g. We choose the following
normalization

(r@)y=0; (L@re)y=28(t-t'). (3.68)

For constant g, (3.67) is called a Langevin equation with an additive noise force.
For g depending on ¢ one speaks of a Langevin equation with a multiplicative
noise term. This distinction between additive and multiplicative noise may not be
considered very significant because for the one variable equation (3.67), for time-
independent 4 and g and for g +0, the multiplicative noise always becomes an
additive noise by a simple transformation of variables. Dividing (3.67) by g gives

. 4 h(¢)
=_> " i =~hn + I(f) . 3.69
1 g 9 (0= Rn =+ 1) G-
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Thus for the variable

n=f@O =12, e— o) (3.70)
9"

we get an equation with an additive noise force where the function 4, in (3.69) is
given by

hy(m) = h(F D))/ g(F D)) (3.71)

For x-dependent g the following difficulty arises. Because the noise I'(¢) has
no correlation time (3.68), it is not yet clear which £ value one has to use in the
function g in (3.67). If, for instance, I'(¢) is considered as a sum of peaked func-
tions with no width, the stochastic variable £(¢) will jump at every time ¢, when
such a peaked function occurs. The question then arises: Which £ value must one
use in g? One may use the value ¢ just before 7, or just after 7, or some value
between these two values. From a purely mathematical point one cannot answer
this question, but one has to use some additional specification, for instance, the
Itd or the Stratonovich definition, Sect. 3.3.3. Here we assume as it is usually
done in physics that the §(¢) function is replaced by a function J,(¢) with a very
small finite width ¢, i.e., for instance by (3.6). In the final result one then has to
take the limit & »0. With this procedure we see that the average value of
(g(& ) I(¢)) is no longer zero if g depends on &. The above average leads to the
“spurious” or “noise-induced” drift.

3.3.1 Example
This spurious drift may be simply exemplified by the equation (@ is a constant)

E=alI(). (3.72)

It is a simplified form of the Kubo oscillator (App. 1). The formal solution reads
t
E)=xexp|afl(t)dt |, (3.73)
0

where £(0) = x is assumed to be the sharp value of the stochastic variable at time
¢t = 0. For this simple example the average of (3.73) can be calculated exactly. To
perform the average, we need not assume that the noise force is d-correlated. For
the following derivation we need to assume only that the noise force, now
denoted by &(¢), is a stationary process with Gaussian distribution and zero mean
value. By expanding the exponential into a power series we have
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t t ti

<xp afe@)dt’ | >=1+af<et))dt + Lazj [<e(t) e(ty) yde de,
0 0 2! oo

2n

2n)!

t

t
(j) j(a(t1)...£(t2,,))dt1...dt2,,+

+...+

The Gaussian property of &(#;), (&(¢;)) = 0 and its stationarity requires (2.64)

() e(ty)) = Dt~ 1)
(e(ty)...&(t2p-1)> =0 (3.74)
(e(ty).. g(th)) - E ¢(t11 tzz) ¢(t13 14) (p(tzz,, 1 12 ).

Because there are (2n)!/(2"n!) different possibilities for the permutation of the
2n times ¢; (the interchange of two times in the correlation function @ and the
permutation of the n correlation functions @ do not lead to different results),
then

t t amt |t n
§...§¢e@)...e(ty,)dty. . .dty, = em! {Hcp(n—tz)dtldtz] .
0 0 2"n! 100

We are now able to perform the summation of the power series of the exponen-
tial, leading to

<xp [ajta(t’)dt’]>— exp [ azjt j[(s(t1)£(t2))dt1dt2} . (3.75)
0 00

For non-Gaussian processes one obtains an expansion in the exponential on the
right-hand side in terms of cumulants (similar to those in (2.37, 42) [3.1]. For the
d-correlated Langevin force I'(¢) (3.68), the double integral in (3.75) reduces to

O s

t
(5) (L(t) (L) ydtydt, =2t

and thus we finally arive at

(1)) = xexp(a’l). (3.76)
Obviously the average value (&£(f)) obeys the differential equation

(@) = W) (3.762)

with the initial condition (£(0)) = x. Whereas for real a (positive or negative) the
average value (£(7)) increases exponentially, it decreases in time for pure imagi-
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nary a. [For complex a it oscillates in time, increasing for (Re{a})? > (Im{a})* and

decreasing for (Re{a})” < (Im{a})? in time].
For small times we thus get a drift from the stochastic force

ey |imo= aP, 3.77)
dr

called a spurious or noise-induced drift.
The average of every moment can also be calculated. We have

O = <x” exp {naif(t’)dt’]>= x"exp[(na)*t] . (3.78)
0

For later purposes we are interested in the #th moment centered at the initial
value x (n = 1)

M,,(1) = (&) -x1") = x" zo<: > expl(va)*11(=1)""". (3.79)

By expanding the exponential we get

2m p,
(a t) E <n> v2m(_1)n-v’ (3.80)
o\NYV

m! =

M) = x" § 1

where the sum over m starts at 1 because fj < " >(— 1)""V=(1-1)"=0. The
last sum can be expressed by v=0\ V¥

. d 2m
Sn,m= ) <n> v2m(_1)n—v= <_‘> (e"-1"
v=0\ Vv du
() (o)
=(— U+—+...
du 21! .

which may be proved by using the binomial series. Since we are especially inter-
ested in the behavior of M, (¢) for small ¢, we therefore calculate the first non-
vanishing element of (3.80). Using the last expression of (3.81) we find (n = 1)

u=0

, (3.81)

SZn—l,m=O for m<n, Sz,,_l,,,=(n—%)(2n)!
(3.82)
Sonm =0 for m<n, 8,,,=Q@2n)!.

Hence we get the following expansion for small # (n = 1):
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2 n!

My, (1) =x>""1 <n - l> @n! @n"+...
(3.83)

M, (1) = xz"gn')—! @n"+....
n.

Defining Kramers-Moyal coefficients D™ (x) as the first time derivative of the
central moment divided by n! (Sect. 3.3.2), i.e,

PO =L Lzml |
n! dt =0
we have
DOx)=a’x, DPx=da’x*, DPx)=0 for nz3. (3.84)

3.3.2 Kramers-Moyal Expansion Coefficients

Usually a formal general solution of the stochastic differential equation (3.67)
cannot be given. As shown in Chap. 4, we can set up a Fokker-Planck equation
by which the probability density of the stochastic variable can be calculated. In
this Fokker-Planck equation the following Kramers-Moyal expansion coef-
ficients enter:

D(">(x,z)=_1_1im i<[5(1+ 7)—x]") . (3.85)
nl =0z £0)=x

In (3.85) &(t+ 1) (r>>0) is a solution of (3.67) which at time ¢ has the sharp value
&(t) = x. To derive these Kramers-Moyal expansion coefficients, we first write
the differential equation (3.67) in the form of an integral equation

(t+1)-x= ng[h(é(t'),t’) +g(&(e"), 1)y I()1de’ (3.86)

and assume that # and g can be expanded according to (3/0x performed on A4 and
g is denoted by a prime, i.e., (8/8(t")h(L(1'),1") ley=x=(8/8x) h(x,1") =
h'(x,t') and similar for g)

h(E@E'), 1) = hx, t)+h' () (EE)—x) +. ..
g, 1)y =gx,t")+g' (e, 1")YEE) ) +... .

Inserting (3.87) in (3.86) leads to

(3.87)

+7 1+T

Et+1)—x= | hQot)dt' + § h' (i t)(EE)—x)dt" +...

+tJiTg(x,t’)F(t')dt’ + trg’(x,t’)(é(t’)—x)]“(t’)dt’ +.... (3.88)
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For £(¢')— x in the integrand we iterate (3.88), producing

t+t t+1 t’
Et+)—x= [ h(x,t)dt' + § B’ (x, ") [h(x, e’y de" e
t t t

+7

+ Ih e, t' )]g(x,t”)F(t”)dt”dt ¥,

t+7 t+7

+ §g(x,z YI(t)de' + jg (x, )jh(x,t”)]“(t yde' de’
+7

+ j g'(x,t )jg(x tYra"yrigh)de'de +... . (3.89)

By repeated iterations only Langevin forces and the known functions g(x, ¢) and
h(x,t) and their derivatives appear on the right-hand side of (3.89). If we now
take the average of (3.89) we have from (3.68)

t+1 t+tt’
@+ —xy= [ hot)dt' + | [h o t)) hx, t7)de"de + ...
t t ot

+7

+ § g'(x,t )jg(x,t”)Zé(t” tder'de' +... . (3.90)

If we take for the J function, for instance, the function (3.6) or any other repre-
sentation J.(¢) symmetric around the origin, and finally take £ —0, we have

t t
Sg(x’t//)zé(tn_t/)dtn — g(x,t') Szé(t//_t!)dtu
t t

=g(x,1") (3.91)
and therefore get

t+1 t+tt
G+ —xy= [ h(e,t)de' + | [h' G, t'Yh(x,)de de + ...
t t t

+7

+ g’ t)glx,t)de +... . (3.92)

In the limit 7— 0 we thus arrive at
DD, 1) = h(x,0)+g' (x, 1) g(x, 1) . (3.93)

The other integrals not written down in (3.92) do not contribute in the limit 7 — 0.
This is seen as follows: each Langevin force on the right-hand side of (3.89) is
accompanied by an integral. The lowest terms are written down in (3.89). Higher
terms vanish for the limit in (3.85). For instance, integrals of the form
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t+t h 153 h
< g ...F(tl)jt...F(tz)g...F(t3)§t...F(t4)dt1dtzdt3dt>

can only give a contribution proportional to 72 which vanishes for the limit in
(3.85). Integrals not containing the Langevin force are proportional to 7", where
n is the number of integrals. For the limit in (3.85) thus only terms with only one
such integral will survive. Using these arguments we obtain for the second coef-
ficient
1 1 t+1t+7
D®x,1) = > lil’I(l) —§ §g0,t)yglx,t')20(t' —t")de' de”
-0 T ¢ t

= g*(x,1). (3.94)

By using these arguments for the higher coefficients D™ we conclude that they
all vanish for n = 3. The final result is

DD, 1) = h(x,t) + g(x, 1)

DP(x, 1) = g*(x,1) (3.95)

dg(x,1)
ox

D™x,1)=0 for nz3.

In addition to the deterministic drift A(x, ), D" contains a term which is called
the spurious drift or the noise-induced drift

dg(x,t 1 3
Dlgllo)ise—ind = %g(x, )= -2— ED(Z)(X’ D. (396)

It stems from the fact that during a change of I'(¢) also £(¢) changes and there-
fore <g(&(t), t) I'(¢)) is no longer zero. For example, we see that DWin (3.84) is
just the noise-induced drift.

3.3.3 Ito’s and Stratonovich’s Definitions

As already mentioned, from a mathematical point of view the stochastic dif-
ferential equation (3.67) with a Langevin force which is Gaussian distributed and
having the J correlation function (3.68) is not completely defined.

It is obviously impossible to plot a realization with a J-correlated noise, i.e.,
one where I'(#;) and I'(t,) are completely independent for arbitrary small |#,—#;].
To see something, the correlation function of 7'(¢) must have at least a width of
the order of the line thickness in the drawing. In Fig. 3.2 a realization of the
Langevin force with the finite correlation time 7, is shown. As seen from the
drawing, the integrated variable W is a much smoother function. It even exists if
the correlation time of I(¢) is zero.

In the beginning of this section we assumed that the correlation function of
the Langevin force has a very small but finite width, let us say of the order e.
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Fig. 3.2. A crude picture of a realization of the Langevin

1
force I'(t) and of W(t) = | I(¢')dr’
Q

This width must be small compared to the time variations incorporated in the
system. For an Ornstein-Uhlenbeck process, for instance, it must be small
compared to all the inverse eigenvalues of the evolution matrix ;- If we have a
finite correlation time ¢, the spectral density of the Langevin force cannot be
independent of the frequency any longer. The spectral density must vanish for
frequencies larger than 1/¢. For applications it seems reasonable to use a spectral
density of the noise which is cut off at some large frequency, because otherwise
the total power of the noise would be infinitely large. With this procedure in
mind, the Langevin equation (3.67) leads to the drift and diffusion coefficients
(3.95).

Mathematicians do not use this “physical procedure”. (Similarly they do not
use the physicists’ method of dealing with the & function.) They write down a
modified form of (3.67) where the limit £— 0 can already be performed from the
beginning, starting with the integral formulation (3.86) of (3.67) written as a
Stieltjes integral

1+7T 1+7T
Et+ny=x+ | h(&t)dr' + | g(&)dw(). (3.97)
t t
The Stieltjes integral must be used, because for ¢ -0 W= I'(t) does not exist and

therefore d W= Wdt=I(¢)dt cannot be used. In (3.97) W(f) is a Wiener
process. In our notation W = I(¢), and the increment is

w(t)= Wit+1)—W(t) = tJiTF(t’)dt’ . (3.98)

The distribution of w(z) is Gaussian because I'(r) is Gaussian distributed. All
correlation functions are obtained from (3.4), and after integration all ¢ func-
tions in (3.4) then disappear. We have for instance (¢ =2, 720, 7, =0, T, = 0)

w0 =0
(w(1)y=0 (3.99)
o))y = | 22 for nzon,

2 T for 11,

[Equation (3.99) agrees with (3.9) for y -0, ¢ = 2 and vy = 0]. Thus the Wiener
process defined by (3.99) and its Gaussian properties form a well-defined process
existing in the limit £ - 0.
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In (3.97) we may now eliminate the stochastic variable &(¢) by the same
iteration procedure as in (3.86). One then obtains integrals of the form

A= M §T¢(w(r’),r’)dw(r’) , (3.100)
s (o

which are not yet defined. The I¢6 (I) [3.2] and Stratonovich (S) [3.3] definitions
are

N-1
A= l‘i_ff}) 'Eo D(w(ty), ) [W(Tir 1) — W(T)} s (3.101)

N-1 A i . .

Ag=tim § @ (2@ T ) e o w(@)],  (3.102)
450 j=0 2 2

where

A=max(r;;1—1); 0=17<7<...<IN=T.

In the 1t6 definition ®@(w(t)), 7;) is independent of the increment w(z;,1) — w(z),
i.e., it depends only on the value of w(z;) at the last point 7;, whereas in the Stra-
tonovich definition both points 7; and 7;, contribute in a symmetric way. If @
does not depend on w(¢), (3.100) is an ordinary Stieltjes integral [for continuous
&(7)] and both definitions agree.

We now want to apply (3.101, 102) to (3.97). The first iteration of (3.97) leads
to (putting & = x in the integral and substituting ¢’ = 1+ 1)

EOV@) —x=[h(x,t+1)dT" + fgCe, t+1)dw(’) +...
0 0
= th(x,t+011)+g(x, t+ O, ) w(r)+. .. (3.103)

with 0 = @; < 1. Because of (3.99) the next iteration leads after averaging to
[cf. (3.90)] using (w(z)) =0 and retaining only terms proportional to 7

EP@)—x) =th(x, t+ 6, ‘L')+<§g’(x,t+ ') g(x, t+ O,7") w(r’)dw(‘c>
0
= th(x,t+ 6017)

+g' (X, 1+ 6O37)g(x, 1+ @3@21)<§w(r’)dw(r’> . (3.10%)
0

The stochastic integral is different for Stratonovich (S) and Itd (I) definitions.
We have (see [1.15, 2.6, 3.4, 5] and the next page for a derivation)
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T 2

<I)§w(r’)dw(r’)>=<wz(r) —> =0, (3.105)
0
T 2

<S)§w(r’)dw(r’> =<W2(T)> =1. (3.106)
0

We therefore obtain for the drift coefficients (3.85)

I. DO=hx1)

3.107
S: DO=h(x,0)+g (x,0)gx1), ( )

i.e., the spurious drift is missing in the It definition. For the diffusion coef-
ficient it is sufficient to use (3.103). Hence no stochastic integral is necessary and
we obtain in both cases

D(2>— > hm Z G, 1+ O, D) (WHD)Y + ... = g2(x, 1) . (3.108)
-0 T

Derivation of (3.105, 106)
If we use (3.99) we easily obtain (3.105, 106):

<I)IW(r ydw(z' )> <EOW(T,)[W(TI+1) W(r,)>

E [<W(T,) w(Tiy 1)) = <w(T) w(T))]

N-1
=Y Q@y-21)=
i=0

T N-1
<S)§)w(r’)dw(r’)> = % .§O[W(Ti) + Wt D w(Tis ) — w(t)]
g N-1
= _2— ; [<W(TI)W(TI+1)>+ (W(TI+1)W(TI+1)>

—w(r) w(t)) — {w(Tip ) w(T))l
1N 1
— E 2742151 271,-217]

IZN

i=
1

i

(ti1—)=r1.

NS

The Stratonovich definition is consistent with (3.90, 91) and leads to the drift
coefficient (3.95) which is consistent with the example (3.72), see (3.84). One
advantage of the It definition is that in (3.97) or its differential form
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dé=h( ndt+g(&,ndw (3.109)
the drift coefficient #(x, r) = D® appears directly. The disadvantage is, however,

that one must learn new rules for integration [e.g., (3.105)] and differentiation,
i.e., the Itd calculus. Here, we will always use the Stratonovich definition.

3.4 Nonlinear Langevin Equations, Several Variables

For N variables {&} = &, &, ..., &y the general Langevin equations have the form

(i=1,2,...,N)

&= h((&,0+g;({&, DT . (3.110)
In this section we use Einstein’s summation convention. The I';(¢) are again
Gaussian random variables with zero mean and with correlation functions pro-
portional to the § function. We may normalize these Langevin forces I;(¢) in

such a way that the correlation functions for different indices / are zero and that
the factor in front of the ¢ function is 2, i.e.,

)y =0, (L;OI('))=20;0(t—1"). (3.111)
We now want to calculate the Kramers-Moyal coefficients. Similar to the one-
variable case, all Kramers-Moyal cofficients higher than n=2 are zero. We
therefore need only the drift and the diffusion coefficients defined by
drift coefficient:

Dy({x}, 1) = D{({x}, 1)

. 1
= lln'(l)—‘[ <€,(l+ T)—xi>|ék(t):xk k= 1,2,.. N, (3.112)
T

diffusion coefficient:
Dy({x}, ) = DP(lx}, 1)
- %m%qam =X G+ D =D g =x, (3.113)
k=1,2,...,N.
In (3.112, 113) &,(¢+ 1) (r>0) is a solution of (3.110) which at time 7 has the

sharp value &,(¢) = x, for k =1,2,..., N. We now proceed in the same way as in
Sect. 3.3.2 first writing (3.110) as an integral equation
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t+T
Et+ 1) —x;= § A ({EENDL 1) + g, (€@, )Y T de (3.119)

inserting the expansions

hi(Eh ) = hi(x, ') + {%hi({x},t')] (@) =X )+
k

(3.115)
g;({&(t)} 1) = g}, 1) + L)i gy({x},t')} (&) =X+
k
into (3.114). We then obtain
+T
L@+ —x;= | h({x}, t)Hde’
t+7T 6
+ [—— hf({x},t')} L&) —x1de + ..
t 6Xk
t+7
+ !gij({x},t’)l“j(t’)dt’
t+T a
+ § | =——gy(x},t") | L;E)&E ) —x]de’ +....  (3.116)
t ka

For [&,(¢') — x;] under the integrals we iterate (3.116). By taking the average and
taking into account (3.111) we then get

Di({x}, 1) = hy({x}, 1) + 11m ET tg [— 9, (x}, t )} gu(lxh, 1)

X260t —¢")yde'de" . 3.117)
From

t_[gkj({x}, t'")26(t = t")dt" = gy ({x, t')

[similar to (3.91) which is equivalent to the Stratonovich rule] we finally obtain
for the drift coefficient

D)y 1) = bk 1) + i (k1) a% g5 1) . (3.118)
k

The last term is the noise-induced drift or spurious drift. Similar to the one-
variable case, the diffusion coefficient is

Dyi(ix}, 1) = gu(ix}, ) g ((x}, 1) - (3.119)
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All higher Kramers-Moyal coefficients are zero

DY) (1) = lim — ([&, (14 ) —x;] .. [E (D —x, ]
v v! -0 7 v v

=0 for vz3. (3.120)

3.4.1 Determination of the Langevin Equation from Drift and Diffusion
Coefficients

As shown in Chap. 4, the drift and diffusion coefficients determine the Fokker-
Planck equation which describes the evolution of the probability density. The
drift and diffusion coefficients D; and D, are uniquely determined by the
functions 4, and g;; of the Langevin equation as given by (3.118, 119) in the Stra-
tonovich sense. The question now arises whether the Langevin equations, i.e., A;
and g;;, are uniquely determined by the drift and diffusion coefficients D; and
D;;. For N variables we have N equations (3.118) and, because of the symmetry
of D= Dy, s N(N+1) equations (3.119) for matrices D, being positive definite.
The number of unknown elements #; is N and the number of unknown elements
g;is N”. The degree of freedom fis given by

f = total number of unknown elements — total number of equations

2
= N+N>-N—-IN(N+1)= IN(N-1).

Thus for N = 1 we have no choice (f = 0) and up to the + sign of g, # and g are
uniquely determined by DV and D® (3.95). For N = 2, f = 1 and we may impose
one additional relation on the unknown elements. For N = 3, f=3 and we may
impose 3 additional relations on the unknown elements. For N = 3 for instance,
according to [3.6] it is possible to require that the deterministic drift term in the
Langevin equation is zero. Thus without any additional relations the Langevin
equations are not uniquely determined by drift and diffusion coefficients for
N = 2. For instance, the following two systems of Langevin equations

=26+ 1]
5.1 &+ 1 (3.121)
62= —2614‘[12
and
g} = cos (&1 + f%)F1+sin(£%¥€%)F 2 (3.122)

&= —sin(&l+ E) I +cos(Ei+ &) I

with (I;(£)I;(t')) = 26;6(¢t—¢') in both cases lead to the same drift and dif-
fusion coefficients

D1 = 2X2 . D2 = —2X1 5 Dlj =0 (3123)

i
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and are therefore physically equivalent. In system (3.122) the deterministic drift
coefficient A;is zero and the noise-induced drift is different from zero, whereas
the reverse is true for system (3.121).

One way to obtain k; and g; of the Langevin equations would be the
following:
by an orthogonal transformation, which may depend on {x} and 7, we can
diagonalize the positive definite matrix D;;, then take the positive root of the
eigenvalues and transform it back. Thus we get a well-defined root of the matrix
D, and obtain one expression for g; and #; in terms of drift and diffusion
coefficients

g;= (Dl/z)ij — (Dl/z)ji

0o
hj=D;— (D"*),— (D%);.
6xk

(3.129)

General solutions can be obtained by multiplying the matrix (D'?); with
arbitrary orthogonal matrices O;;({x}, f). For further investigations and especially
for the case where the matrix Dj; is singular (i.e., Det D;; = 0), see [3.6].

3.4.2 Transformation of Variables
The Langevin equations are very convenient to calculate the drift and diffusion
coefficients if a variable transformation is performed. If we introduce new

variables &/ in (3.110) by

& =E(ELn, (3.125)

we obtain for the new variables the Langevin equations (the Langevin forces are
not changed)

ar 8L ¢ 8&
hIGEL D + g8 LOT;. (3.126)

Thus the transformed quantities 4’ and g’ are given by

'

o0& 8y . 8¢
p=98 04, o G (3.127)
ot 661( aék

Hence, for the transformed drift and diffusion coefficients (writing x; instead of
&} in the argument)
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D! = h} +gj ag,;j
Bx,
_ ox; + ox/ By + ox; . §] ox; g
ot ox, ax, Ox; \ Oxy
9x;  0x] ox; 09, 9 [ ox]
— 4 i Dk_ i 9, 9ij +grj i gii
ot oxy oxy ox, 0x, \ 9xy
dx;  ox! 8%x!
= +—LD;+ I R
ot oxe < Bmox, 00
i.e.,
' / 2.1
pr =X Ox 0N g (3.128)
ot oxy Ox, 0xy
ox! 0x;
f=— L Dy (3.129)
Ox, Oxx

If the transformation (3.125) is nonlinear, then the old diffusion coefficients
affect the new drift coefficients.

3.4.3 How to Obtain Drift and Diffusion Coefficients for Systems

If we know the Langevin equations for a system we immediately obtain the drift
and diffusion coefficients by (3.118, 119). The problem, however, is how to get
these equations. In the case of Brownian motion we may obtain the Langevin
equations by heuristic arguments, as already discussed in the introduction fora
particle not moving in an additional field of force. For the Brownian motion of a
particle in a potential mf(x), it scems reasonable to assume that the Langevin
force is not affected by the potential. (The collision of the molecules with the
particle is described by a Langevin force. If the motion of the molecules is not
affected by the potential which acts on the particle, the Langevin force is un-
changed.) We then obtain the Langevin equations

0()= —yo(O)—f x@)+ I'(0)
x() = v(t)

(3.130)

with I'(¢) given by (3.2, 4). Thus the drift and diffusion coefficients now read
(3.13, 118, 119)

D,= —yv—f'(x); Dy=3q=ykT/m
D,=v : Dy=D,=0.

(3.131)

Instead of using different symbols we have distinguished the stochastic variables
from the starting values at time ¢ by adding the time argument. Sometimes the
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system of the two first-order equations (3.130) is written in one second-order
equation

O +yx@)+fSx@)=1@). (3.132)

We also obtain a Langevin equation for those cases where a given external noise
acts on a system without any further noise. For instance, if we think of an elec-
trical circuit, we know the deterministic differential equations. These differential
equations can always be cast into the form of first-order equations, i.e., we
obtain the functions A;. If we then couple the circuit to a noise generator, i.e., if
we add a given noise, we get the Langevin equation (3.110), where g;; is assumed
to be known from the external noise. (For such a physical noise with a finite noise
power we have to use the Stratonovich rule and not the Itd rule.)

In systems without external noise we speak of internal noise [3.7]. For
instance, the fluctuations in a circuit due to the discreteness of the moving
charges cannot be removed from the circuit. It is therefore termed internal noise.
Because we cannot switch off the noise we cannot obtain 4; directly, although we
may, however, measure the drift and the diffusion coefficients.

If we know some general equation like the master equation for the system, we
may then derive from it the Fokker-Planck equation by some approximation
techniques, for instance, by the 1/Q expansion of van Kampen [1.24] or the 1/N
expansion of Haken and Vollmer [3.8]. One may also calculate directly from
more general equations the drift and diffusion coefficients. These were cal-
culated for the variables describing a laser system where the quantum fluctua-
tions have to be considered as internal noise, via quantum-mechanical operator
equations [3.9].

3.5 Markov Property

The process described by the Langevin equation (3.67) with J-correlated
Langevin force (3.68) is a Markov process, i.e., its conditional probability at time
t, depends only on the value £(¢,_4) = x,_, at the next earlier time (2.73). This
follows from the fact that a first-order differential equation is uniquely determin-
ed by its initial value and that the J-correlated Langevin force I'(¢) at a former
time ¢ < ¢,_, cannot change the conditional probability at a later time ¢ > ¢,_;.
The same is true for the system of Langevin equations (3.110) with Gaussian
Langevin forces according to (3.111).

This Markovian property is destroyed if I'(¢) is no longer J-correlated. For
instance, the process described by

E=h@)+I() (3.133)

with a Gaussian distributed force I:(t), which has the correlation function

(F(t) (1)) = Zie'y"l‘fz', (3.134)
y
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is no longer a Markov process for finite y (although [itself is still a Markov pro-
cess). However, if we introduce an additional variable #, then a Markov process
results for the two-dimensional process described by

= h(&)+
? @+ (3.139)
n=—-yn+I{t)
with d-correlated noise
(I'(t) () =qot—12) . (3.136)

Because of (3.1, 2 and 10) it is easily seen that (3.135, 136) are equivalent to
(3.133, 134). Thus by introducing new random variables, non-Markovian pro-
cesses may be reduced to Markovian processes (see App. Al for an application).

3.6 Solutions of the Langevin Equation by Computer Simulation

The one-variable Langevin equation (3.67) or the multivariable Langevin equa-
tion (3.110) may be solved by computer simulation, also called the molecular
dynamics method. The main idea is to simulate the Langevin force on a
computer, integrate the equation of motion with the simulated Langevin force
and then take the average for a large number of realizations. The computer
simulation of the Langevin force and the numerical integration may be perform-
ed simultaneously. To explain the main idea we treat the one-variable Langevin
equation (3.67) first.
To integrate the Langevin equation starting at = 0 with the value

$0) = ¢

to the finite time ¢ = 7, we first divide the time interval T into N small finite steps
of length 7

t,=tn, =T/N, n=12,...,N. (3.137)
The stochastic variable at a later time #,,, 4

Cnr1 =8 1) = (- (n+1))

is calculated according to (n =0,1,...,N-1)

b1 =+ DOt T+])/ DO &) TW,. (3.138)

Here, wy, Wy, ..., wy_1 are independent Gaussian-distributed random variables
with zero mean and with variance 2, i.e.,
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(wn> = 0 3 (wnwn’> = 25nn’ (3.139)

and D and D@ are given by (3.95). Obviously, for 7—0 (3.138) leads to the
correct Kramers-Moyal coefficients (3.85). [For the Itd definition (Sect. 3.3.3) we
may use DU = pand D@ = 42 ]

Usually, a random number generator produces random numbers r, in the
range 0 = r, < 1. To obtain the random variables w, we may use

M
w,=/24/M L (rv= 1/2), (3.140)

where M is a large number, e.g., 10. Obviously, the average of (3.140) is zero.
From the central limit theorem, w, are Gaussian distributed for large M. Further-
more, the variance is equal to 2

M
(wiy = Q4/M) ¥ ((r,—1/)(r,—1/2))
vyu=1
24 M 24 1/2
= TAr—1/2 ="M | x’dx=2.
Mv§1<(r " M _§/2x *

In this way we obtain a realization &y = &(T). The error of this procedure for one
step is of the order % and for N steps of the order 7. As shown in [3.10], one may
improve the method in such a way that the error for N steps is of the order t2or
even of some higher order [3.11]. By calculating a large number of such realiza-
tions (one must, of course, be careful that the random numbers r, are inde-
pendent for each n and for each realization) one may perfom an average and thus
obtain (£(7)) or any other expectation value (f(£(7))). The initial value £, may
have either a sharp value or it may already be a stochastic variable, the prob-
ability of which follows from the initial distribution.

For the Langevin equation with N, variables we proceed in the same way.
Denoting the square root of the diffusion matrix by g, (3.124), and the drift coef-
ficient by D, (3.118), we obtain the stochastic variables ¢&;, = &;(¢,) at times
t,=thby(n=0,1,...,N-1;i=1,2,...,N,)

Nlr
sty = Eint Dl 1) T+ £ G5 (s 1)) T (3.141)
J =
The starting value at ¢ = 0 is denoted by
&io=¢&i(0).
In (3.141) wjo, Wj1, ..., Wjv—1 are N X N, independent Gaussian variables with

zero mean and with variance equal to 2, i.c.,
(anwknr> = Zdjkdrm' . (3.142)

Each of the variables w;, may be generated according to (3.140).
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It is usually not very difficult to perform the iterations (3.138 or 141) and then
take the average over various realizations. The accuracy of the method is,
however, not very good: in particular it is very hard to improve the accuracy by
an order of magnitude. (For linear processes, where the solution is Gaussian, the
relative error would be proportional to N~ 1 2, where N, is the number of realiza-
tions.) For this reason, the method is most appropriate to get some estimate for
CE(T)) ({E(T))), if the time interval T is not too large compared to the time
constants implied in D® and D® (D, and D).



4. Fokker-Planck Equation

As shown in Sects. 3.1, 2 we can immediately obtain expectation values for pro-
cesses described by the linear Langevin equations (3.1, 31). For nonlinear
Langevin equations (3.67, 110) expectation values are much more difficult to
obtain, so here we first try to derive an equation for the distribution function. As
mentioned already in the introduction, a differential equation for the distribu-
tion function describing Brownian motion was first derived by Fokker [1.1] and
Planck [1.2]: many review articles and books on the Fokker-Planck equation
now exist [1.5—15].

Our derivation starts with an expansion of the distribution function, known
as Kramers-Moyal expansion [1.17, 19]. In this equation, only the Kramers-
Moyal coefficients (3.95, 118—120) will enter. As seen in Sect. 3.3, these
Kramers-Moyal coefficients can also be calculated for the nonlinear Langevin
equations. As it turned out, these coefficients vanish for n = 3 for the Langevin
equations (3.67, 110) with J-correlated Gaussian-distributed Langevin forces,
and only the drift and diffusion coefficients (3.107, 108, 118, 119) enter in the
distribution function equation. Hence the Kramers-Moyal expansion with an
infinite number of terms stops after the second term. This equation is then the
Fokker-Planck equation or the forward Kolmogorov equation.

The problem of obtaining averages is thus reduced to the problem of solving
this Fokker-Planck equation. For pedagogic reasons we first treat the one-
variable case and then the more complicated case of N variables.

4.1 Kramers-Moyal Forward Expansion

It follows from the definition of the transition probability (2.69) that the prob-
ability density W(x, t+ ) at time ¢+ 7 and the probability density W (x, ¢) at time
t are connected by (7 = 0)

W(x,t+1) = [P(x, t+1|x',t) W(x', t)dx' . 4.1)
To derive an expression for the differential 8 W (x, r)/8¢, we must know the tran-

sition probability P(x, t+ 7 |x’,f) for small 7. We first assume that we know all
the moments (n = 1)
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M, (x',1,7) = ([EE+T) = EOD ey =n = Jx—X")"P(x, 1+ T]x', )dx,  (4.2)

where | ¢ -, means that at time ¢ the random variable has the sharp value x'. We
now derive a general expansion of the transition probability in three different
ways.

First Way

If all the moments are given, we can construct the characteristic function (x' is to
be considered as a parameter) (2.19, 21)

Clu,xt,r)= [ e P(x,t+7|x,1)dx

1+ ¥ (u)" My, t,7)/n! . 4.3)
1

n=

Because the characteristic function is the Fourier transform of the probability
density and vice versa (2.22) we can express the transition probability by the
moments M,

P(x,t+1|x',1) =2L f e =N, x',t, v)du
T —oo

ZL je-iw—f{u g(iu)”M,,(x’,t,r)/n!} du. (4.4
T —o n=1

Because (n = 0)

2—17[— VTm(iu)”e_i“("’x')du = <— a—i>n5(x—x’) 4.5)
and
O(x—x")f(x") = o(x—x")f(x), 4.6)
we have
P, 1+ 7|x', 1) = [1 +y L <— i>nM,,(x, 1, r)} S(x—x'). @4.7)
isin! \ 8x
Second Way

Equation (4.7) may be derived without using the characteristic function in the
following way [4.1]: starting from the identity

P, t+t|x,0) = [6(y—x) P(y,t+ T|x', )dy (4.8)

and using the formal Taylor series expansion of the J function in the form
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oy—-x)=8(x"—x+y—-x")

= E SX:1522_<_j1i> 5(xﬂ—x)
! ox’

_ §M<_ai> 50 —x) | (4.9)

we get

P(x, t+1|x,t) = § L<—6_{1> fO=x")Y'PW, t+t|x', t)dy 5(x' — X)

n=0n!
_ [H 2 L<_i> M,,(x,,t,f)} 5 —)
n=1 n! ox
1 B (-t
=1+ Y —(—— )M, (xt7)|éx—x"). (4.10)
n=1n! ox

In deriving the second line of (4.10) we used (4.2) and for the last line
d(x—x") = 6(x'—x) and (4.6).
Inserting (4.7) or (4.10) into (4.1) leads in both cases to

W, t+1)y— W(x, t) = a—Wa()t—cﬂ 7+ 0(1%)
= g <_i> fo(x=x"YM,(x,t,7) W(x',1)dx'/n!
n=1 ox
=y <—i> [M,(x, 1, T)/n 1 W(x,t). (4.11)
n=1 ox

Third Way

The formal Taylor series expansion (4.9) is convenient for deriving (4.11). After
multiplying (4.9) by a function of y and x’ and then integrating the equation over
y and x’, we end with a Taylor series expansion of this function (only for this
expansion can the Taylor series converge). Therefore (4.11) may be derived by
avoiding any J function and its derivatives and using only Taylor series
expansion for the distribution function and the transition probability. This
derivation of (4.11) runs as follows. Introducing A = x—x’, the integrand in 4.1
may be expanded in a Taylor series according to

P(x, t+ )X, 0y W(x',1) = P(x—A+ A, t+t|x— A, 1) W(x— 4, 1)

- E 1" A"<i> Px+A4,t+1|x,0) W(x,t).
n=0 n! dx
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Inserting this expression in (4.1) and integrating over 4 we directly obtain (4.11).
(The negative sign of the differential d4 = —dx' may be absorbed into the
integration boundaries.)

We now assume that the moments M, can be expanded into a Taylor series
with respect to t(n = 1)

M, (x,1,7)/n! = DP(x, 1)1+ O(%) . (4.12)

The term with 7° must vanish, because for = 0 the transition probability P has
the initial value

P(x,t|x', 1) =d(x—x"), (4.13)

which leads to vanishing moments (4.2). By taking into account only the linear
terms in 7 we thus have

WD _ 5 (_ 8\ pW, sy wx,t) =Lxu W, (4.14)
ot n=1 ox

where the differential symbol acts on D" (x,t) and W(x, t). The Kramers-Moyal
operator Ly is defined by

Ly (x, 1) = El(—a/ax)"p(")(x, 0. (4.15)

n=

Equation (4.14) is the Kramers-Moyal expansion.

For non-Markovian processes, the conditional probability in (4.1) depends on
the values of the stochastic variable &(¢') at all earlier times ¢’ <7 (2.69). Hence
also the moments (4.2) and their expansion coefficients D™ which occur in (4.14)
depend on these earlier times for non-Markovian processes. For Markov pro-
cesses, D™ do not depend on the values of &(¢') at these earlier times. With
respect to time £, (4.14) is then a differential equation of first order and the dis-
tribution function W(x, ) is uniquely determined by integration of (4.14) starting
with the initial distribution W(x,1) (t>1,) and for appropriate boundary
conditions. Therefore we assume that the process described by the probability
density W(x,t) is a Markov process.

The transition probability P(x,? | x’,¢') is the distribution W(x,?) for the
special initial condition W(x,t')=d(x—x'). Thus the transition probability
must also obey (4.14), i.e.,

BP(x, t)x',1')/81 = Lgy(x, ) P(x, £|X',1') (4.16)

where the initial condition of P is given by (4.13) with ¢ replaced by #".

4.1.1 Formal Solution

A formal solution of (4.16) with the initial value (4.13) for time-independent
Ly reads
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P(x,t|x',t") = eFxM®U=1) 5050 51y | .17

For time-dependent Kramers-Moyal operators we have to take into account that
Lym does not need to commute with itself for different times. The general
solution of (4.16) with the initial value (4.13) may be found by iteration of (4.16)
(Dyson series [4.2])

1
P(x,t|x",t'y=0(x—x") + {Lgm(x, t,)dt; 6(x —x")
;

t oy
+ tjdt1 §dts L, ) Lxm(x, 1) 6(x—x") + ...
A

w L 4 Ih—1
= ':1 + ¥ idtljdtz i dt,,LKM(x, t1)...LKM(x,t,,):|
t’ '

n=11¢

Xo(x—x"). (4.18)

If we introduce the time-ordering operator 7 which interchanges the time-
dependent operators in such a way that the operators with larger times stand to
the left of operators with smaller times, (4.18) becomes [4.2]

P o t t t
P(x,tlx’,t’)=T{1+ E -1—'fdtljdtz...fdt,,LKM(x,q)...LKM(x,t,,)]
n=1t n! v t’ t

Xdx—x")

.~ ¢
= Texp{ SLKM(x,t”)dt”:l d(x—x'). (4.19)
L

For small time differences 7= ¢—¢’ (4.18) reduces to
P, t+1|x,0) = 1+ Lgy(x, £) - T+ O(1H)] (x — x") (4.20)

in agreement with (4.7, 12, 15).

4.2 Kramers-Moyal Backward Expansion

In (4.15, 16) we derived an equation of motion for the transition probability
P(x,t|x',t"). In (4.15, 16) differential operators with respect to x and ¢ occur,
i.e., with respect to the value of the stochastic variable &£(¢) at the later time 7>¢',
Backward expansions are equations of motion for P where we differentiate with
respect to x’ and 7', i.e., with respect to the value of the stochastic variable £(¢')
at the earlier time ¢’ <t. As shown at the end of this section, both equations lead
to the same result for P and thus either one can be used for determining P.
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For the derivation we follow closely the procedure of the second way in
Sect. 4.1

Starting from the Chapman-Kolmogorov equation (2.78) in the form
(t=t'"+1=1t")

P(x, tlx',t') = [P(x,t|x" t' + 1) P(x",t' + T|x',¢")dx" (4.21)
we write as in (4.8)

Pt +1|x,t")=[6(r—x"YPW,t'+t|x',t")dy. 4.22)
Furthermore, we make a Taylor series expansion of the J function in the form

Sy—-x")=6(x"-x"+y—x")

Nt x)n< >5(x x") (4.23)
ox’

n=0 n!
and obtain

Pt +t|x'\t') = Z —j(y xY'P(y,t'+ t|x', t)dy<aa > o' —x')
x'

[1+n21n—M(x r r)< i>}5(x x").  (4.24)

Inserting (4.24) in (4.21) yields

T+ 0(12)

I’t!
P(x,t|x',t")—P(x,tlx', t'+ 1) = — B_P(x_,at|x__)_
tl

:%L M, (x', t’r)<a>P(xtlxt+T)
1 n! ox’

n=

—rZD(")(x t)< 0 >P(xt|x ")+ 0(7%) .
= ox’ (4.25)

In deriving the last line we used (4.12). By taking into account only the linear
terms in T we get
Px, t|x',t
QPOOIBL) - Lo ) PO 15, 4.26)
t/
with

L', t) = ZD‘")(x ) (@/8x")". 4.27

n=1
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As may be easily checked, (4.27) is the adjoint operator of (4.15). Equations
(4.26, 27) form the desired Kramers-Moyal backward expansion.

4.2.1 Formal Solution

A formal solution of (4.26) with the initial value (4.13) reads for time-in-
dependent L

P(x,t|x',t") = eLEM("')(’_")J(x—x’) . (4.28)
For a time-dependent operator we have the Dyson series

o I t t
P(x,t|x’,t’)=[1+ Y fdyfds... dt,,LgM(x’,q)...LﬁM(x’,t,,)]

n=1¢ f ty_1

X olx—x")

N © 1 t t t
=T [1 + 21 — fdeg§dty.. fde, Li(x', t1). . . Lim(x', t,,)]
n= oot t t'

X dx—x")

. ¢
= Texp[ F L', t”)dt”} S(x—x"). 4.29)
P

In (4.29) the time-ordering operator T arranges the operators Liv(x', 1) so that
the time in the products of L g increases from left to right. For small time differ-
ences T =t—t' (4.29) reduces to

P, t+tlx’, 1) = 1+ Lyx', ) T+ O(t)] (x —x') . (4.30)

4.2.2 Equivalence of the Solutions of the Forward and Backward Equations

To show the equivalence of (4.28, 29 and 30) with (4.17, 19 and 20), respectively,
we first derive the relation

AX)(x—x")=A (x")o(x—x"). 4.31)

Here A(x) is a general real operator containing only differential operators with
respect to x and functions depending only on x. For a derivation of (4.31) we first
observe that A4 (x) ¢(x) can be written in two different ways:
AE) p(x) = Ax) fo(x—x") p(x")dx’
= [A(X)d(x—x") p(x")dx’
=[x AX)d(x—x")dx', 4.32)
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AX) p(x) = fo(x—x")AX') p(x')dx’
=fp(x)AT(x")dx—x")dx" . (4.33)

By subtracting both expressions we get
0=fp(x)AX)sx—x)-AT(x")d(x—x")dx" . 4.34)

Because ¢(x) is an arbitrary function the bracket in (4.34) must be zero.

The equivalence of (4.20, 30) follows immediately from (4.31) for
A (x) =L gy (x). Furthermore, one easily shows the equivalence of (4.28, 29) with
4.17, 19) by using (4.31) for

A(x) = eLkm@U=1) 1 4% (x) = e LRI (4.35)
and for

Ax) = fexp[ thLKM(x,t”)dt”}
' (4.36)

. ¢
AT (x) = Texp{ ij{M(x,t”)dt”} .
;

The last relation follows from the fact that the adjoint of a product reverses its
order

(ABC...)*=...C*B*A*. (4.37)

4.3 Pawula Theorem

For the solution of (4.14) it is important to know how many terms of expansion
(4.15) must be taken into account. We first derive the theorem of Pawula [4.3],
which states that for a positive transition probability P, the expansion (4.15) may
stop either after the first term or after the second term, if it does not stop after
the second term it must contain an infinite number of terms. If expansion (4.15)
stops after the second term, (4.15, 16) are then called the Fokker-Planck or
forward Kolmogorov equation, and (4.26, 27) is then called the backward
Kolmogorov equation.

To derive the Pawula theorem we need the generalized Schwartz inequality

[1/(r) g(x) P(x) dx]* = [£2(x) P(x)dx [g*(x) P(x)dx . (4.38)

In (4.38) P(x) is a nonnegative function and f(x) and g(x) are arbitrary
functions. The inequality may be derived from
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SSFx) 900 —f0) g@)*P(x) P(y)dxdy = 0,

which obviously holds for nonnegative P. We now apply (4.38) with (n, m = 0)

Jx)=&x-x)";  gx)=@x—x)'";
P(x) = P(x,t+1|x',t")

and thus obtain for the moments (4.2) the inequality
M%n+m§M2n'M2n+2m- (439)

For n =0 we have M2 < M,,,. This relation is obviously fulfilled for m = 0
(My=1). For m =1 no restriction follows from this relatlon for the short time
expansion coefficients D™ of M, (4.12). For m=0, M3 2, <M3 2ns Which is
obviously fulfilled for every n. Thus we need to consider (4.39) only for n =1
and m = 1. By inserting (4.12) into (4.39), dividing the resulting inequality by 72
and takmg the limit 7— 0 we then obtain the following inequality for the expan-
sion coefficients D™ (n =1, m = 1):

[(@Qn+m)! D¥"™12 < 2n)! 2n+2m)! D@ pern+2m (4.40)
If D@7 is zero, D®"*™ must be zero, too, i.e.,

D=0 D@D _pe+d_ 0 (nz1). (4.41)
Furthermore if D®"*™ is zero, D®"*™ must be zero, too, i.e.,

D =0=DM=0 (n=1,...,r-1), ie.,
D V= =p" V=0 (rz22. (4.42)

From (4.41) and the repeated use of (4.42), one concludes that if any D?? = 0 for
r =1 all coefficients D™ with n = 3 must vanish, i.e.,

D®=0=-D®=DW=_..=0 (@=1). (4.43)

The Pawula theorem immediately follows from the last statement. (In contrast to
(4.43) for even coefficients a vanishing odd coefficient does not lead to restric-
tions.)

The Pawula theorem, however, does not say that expansions truncated at
n =3 are of no use. As we shall discuss in Sect. 4.6 for a simple example, one
may very well use Kramers-Moyal expansions truncated at # = 3 for calculating
distribution functions. Though the transition probability must then have nega-
tive values at least for sufficiently small times, these negative values may be very
small. For the example discussed in Sect. 4.6, the distribution function obtained
by the Kramers-Moyal expansion truncated at a proper n = 3 is in better agree-
ment with the exact distribution than the distribution function following from
the Kramers-Moyal expansion truncated at n = 2.
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4.4 Fokker-Planck Equation for One Variable

If the Kramers-Moyal expansion (4.14) stops after the second term we get the
Fokker-Planck equation (8/9¢ is denoted by a dot)

Wi(x,t) = Lgp W(x,1), (4.44)
3 3’ o

Lip= —-—DVx, 1)+ —DP(x,1). (4.45)
Ox ox

For the nonlinear Langevin equation (3.67) with (3.68) the drift coefficient DW
and the diffusion coefficient D® are given by (3.93, 94) in terms of the function
occurring in (3.67). All higher Kramers-Moyal coefficients D™ with n=3 are
zero [see the last equation in (3.95)] and therefore (4.44) with Lgp given by (4.45)
is the exact equation for the probability density W(x, ¢). For another derivation,
see App. AS.

Equations (4.44, 45) may be written in the form

OW L85 o, (4.46)
ot ox
S(x,t) = [D“)(x,t) - aiD(z)(x,t)} W, 1) . (4.47)
X

Because (4.46) is a continuity equation for a probability distribution, S has to be
interpreted as a probability current. If this probability current vanishes at the
boundaries x = X, and x = X4, (4.46) then guarantees that the normalization is
preserved

Xmax

| Wi(x,t)dx = const . (4.48)

min

For natural boundary conditions (X, = — %, Xmax = ), W({x, ) and the prob-
ability current (4.47) also vanish at x = + oo.

For a stationary process the probability current must be constant. With
natural boundary conditions, the probability current must be zero. To demon-
strate the usefulness of the Fokker-Planck equation we calculate the stationary
distribution function for the Brownian motion process described by the Langevin
equation (3.1) with (3.2). Here we have

DW= —yv, DP=g/2=ykT/m (4.49)

and we immediately get from

S= <— yo — YKT i> W=0 (4.50)
m o
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and from the normalization condition the Maxwell distribution (3.30), i.e.,

’ / m muy?
W) = Sk T exp <— 2kT> . 4.51)

4.4.1 Transition Probability Density for Small Times

We now derive an expression for the transition probability density for small 7 in
another form than (4.20) specialized for the Fokker-Planck operator, i.€.,

P, t+t|x',t) = [1 +Lgp(x, 1) T+ O(TH)] 6(x — x') (4.52)
with
9 o 3 o
Lep(x,t) = ——DV(x, 1) + —D¥(x,1). 4.53)
ox ox

Inserting (4.53) into (4.52) we get up to corrections of the order 72

2
P(x,t+1lx',t) = 1—_a_D“)(x',t)H6_20<2>(x',t)r S(x—x")
ox Ox

2
= exp {— Ea—D“)(x’, T+ %D(Z)(x’, 1) r} ox—x').
X X @.54)

In deriving (4.54) we‘replaced X by x' (4.6) in the drift and diffusion coefficients.
If we now introduce the representation of the § function in terms of a Fourier
integral, we obtain for small ¢

2 - }
P(x, t+1|x',t) =exp| — iD“)(x’, Ht+ o X DO, 1)t 1 | e dy
ox ox 27 -

1 ¢ . .
— { exp[ —iuDYx, Ht—u?DPx' 1) T+ iu(x—x')du
T —

vt Dypyr 2
- 1 exp<— [x—x'-D7', 1] > (4.55)

2)/2DPx, 0t 40O, 1

For drift and diffusion coefficients independent of x and ¢, (4.55) is not only
valid for small 7, but for arbitrary t> 0. [The last line in (4.54) is then the formal
solution (4.17).] We now want to check that (4.55) leads to the correct moments

M, (x',t,7) = f(x—x")"P(x,t+ t|x', £)dx .
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Using [4.4]
§ x"expl—(x—B)21dx = @) ~")/7H,(f) . (4.56)

where H,(x) are the Hermite polynomials (Hy=1, H; = 2x, H, = 4x2-2,...)
we obtain from (4.55)

M, (x',t,7) = [-i)/DPw’, 1)1]"
x H,{£iDD(x',0))//DP(x",0)} . 4.57)

For the expansion coefficients of M, linear in 7 we therefore have (M, = 1)

. DO, 1) n=1
lim—M,(x',t,7)/n! = < D@x",t) for n=2
=0T 0 n=3.

Thus (4.55) [as well as (4.52, 53)] leads to the correct drift and diffusion coeffi-
cients, i.e., it leads to expectation values which are correct up to terms linear in 7.

The form (4.55) is not unique. A class of equivalent forms has been derived
[4.5, 6]. One of these forms may be obtained as follows: by performing the dif-
ferentiation for the drift and diffusion coefficient in (4.53) we get

_ %0  8’D%x 1)

Lep(x,t) =
rp(X, 1) o a2
2 2
— D(l)(x,t)_zw i.q.D(z)(x,t)a_z. (4.53a)
ox ox ox

If we insert this expression into (4.52) and replace 8/8x by —9/0x’, we can
perform the same steps as before, leading for small time 7 to

1 aDY(x, 1) 32D, 1)
_ —exp| — T+ 3 T
2)/ aD®x, 1)t ox ox

' — DD 1) — 28D 2
_ fex' D00 = 28D 0/0x17) oo
4D%x, 0t

P(x,t+t|x',t) =

Notice that here x instead of x’ appears in the drift and diffusion coefficients.

4.4.2 Path Integral Solutions

The transition probabilities are needed for the path integral solutions [1.14,
4.5~12]. They are derived as follows: by repeatedly applying the Chapman-
Kolmogorov equation (2.78) we can express the evolution of W(x,¢) from the
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initial distribution W(x,, y) in terms of the transition probability. Dividing the
time difference ¢ — ¢, in NV small time intervals of length = (£ —#,)/N, we have
(t,=ty+n7)

W(X, t) = sde—l sde_Z. .. sde
PO Exn_15tn-1) POOy_ 1y En—1 XN 2y En—2) - -
P(xy, by |xq, 1) Wixo, to) - (4.58)
For N— o we may use for the transition probability the expression (4.55) for
small 7, which then gives correct expectation values of W(x, ¢) in the limit N— oo.
(Every integral is correct up to the order 1/N? and the product of the N+ 1

integrals is then correct up to the order 1/N [4.6].) Inserting (4.55) into (4.58) and
taking the limit N-» o0 we obtain with xy = x, [t = (¢ — {;)/N]

Wx,t) = lim | ... jNI"_[l{[47zD(2)(xi,ti)r]_l/zdxi}

1
N—o Ntimes i=0

_ 1 2
X X <_N ' X1 —x—DP(x;, 1) 1]

)

Wixy, tg) . 4.59
i=0 4DPx, 1)1 > (o fo) @9

If we use (4.55a) instead of (4.55) in (4.58), we obtain a slightly different
expression.

Positivity of the Distribution Function

Because in (4.59) all the factors in front of W(x,, {;) are positive, the distribution
function must remain positive if we start with a positive distribution W(x, ).
Generalized Onsager-Machlup Function

By writing
X=X =x()t

we may put the negative term in the exponent in (4.59) for the limit N— oo in
the form

Nt @) =DV, D) 1) - DO, )

4.60
o 4D, 1) h  4DPx(),t") (4.60)

The function under the integral is called a generalized Onsager-Machlup func-
tion. (Onsager and Machlup [4.7] investigated such forms for a linear drift coef-
ficient and a constant diffusion coefficient.) Expression (4.59), where the sum in
the exponent is replaced by (4.60), seems at first glance to be quite evident. For
small diffusion D@, for instance, only the pathes near the deterministic solu-
tion of
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x=DW, 1),

contribute to W. It was pointed out in [1.14, 4.6], however, that this and similar,
other continuous forms are meaningless if the discretization process is not
specified. Hence, only discrete forms such as (4.59) should be used.

4.5 Generation and Recombination Processes

To exemplify a process containing an infinite number of Kramers-Moyal coef-
ficients D™ we consider a process in which the stochastic variable £(¢) can take
on only the discrete values x,, = Im (m = 1, ..., M) and in which only transitions
to nearest-neighbor states occur. If the transition rate from state x,, to state x,, 4
(generation rate) is denoted by G (x,,, t) and if the transition rate from state x,, to
state x,,_; (recombination rate) is denoted by R(x,, f), the equation of motion
for the probability W(x,,, t) of state x,, is given by the following master equation
[special case of (1.34) for nearest-neighbor transitions]

W(xm,t) = G(xm—ht) W(xm—lat)'_G(xm’t) W(Xm,t)
+R(xm+1)t) W(xm+1,t)_R(xm9t) W(xm’t) . (461)

This equation may be easily read off Fig. 4.1. For x,,=m, G(m)=um,
R(m) = vm, (4.61) describes a birth and death process, whereas for x,, = m,
G(m) = u, R(m) =0, (4.61) describes a Poisson process. Exact solutions of
(4.61) for various processes are given in Table 2.1 of [1.12}; for multidimensional
generation and recombination processes, see [1.11c].

Because

Sflxx1]) =exp(£18/8x) f(x)

we may immediately write the master equation (4.61) in form of the Kramers-
Moyal expansion (4.14). Denoting the variable x,, by x we have

W(x, 1) = [exp(—18/0x) - 11 G(x,t) W(x,t) + [exp(l8/0x) —1] R(x, t) W(x,1)

= fl(—a/ax)"m)(x, HW,1), (4.62)
=
X o1 WX, 1:1)
G(X,,) RXm . 1)
Xm Wix,,, 1)
G(Xp_1) RiXm)
Xm—1 WX, _1,t)

Fig. 4.1. Transition rates leading to the master equation (4.61)
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where the Kramers-Moyal coefficients are given by
D™, t) = ("/n)[G(x, 1)+ (—D"R(x, )] . (4.63)
In particular, the drift and diffusion coefficients D® and D® read

D® = |(G-R) = I(rate in — rate out)

(4.63a)
D® = (1*/2)(G + R) = (I*/2)(rate in + rate out) .

If the difference / between the discrete steps becomes smaller, higher Kramers-
Moyal coefficients also become smaller and we may truncate expansion (4.62) at
some finite value n. For an actual system we cannot change /. If, for instance, x
describes electric charges, / will be the elementary charge e, which cannot be
changed. We may of course increase the size of system. If we increase the size of
the syster by a factor L, i.e. m=1,..., ML, extensive quantities will also in-
crease by this factor, i.e., x =ml= Lx,,. If the rates G and R and the prob-
ability depend only on the intensive quantities x,,, = x/L = (m/L) [, then we get

W (Xnors 1) = T, (= 8/0%100)"D P (Xors £) W(¥Xors 1)
1

D (Xyor, 1) = (@"/111) [G (Xpors 1) + (= 1)"R (Xpor, 1)]
with
o' =/L)". (4.64)

Thus by increasing the size of the system the Kramers-Moyal coefficients also
decrease more rapidly in n (1/2 expansion by van Kampen [1.24]). Thus, if we
truncate expansion (4.62) after the second term we obtain the Fokker-Planck
equation (4.44, 45) with drift and diffusion coefficients given by (4.64). Other
possibilities to truncate (4.62) are discussed in the following section for the
Poisson process.

4.6 Application of Truncated Kramers-Moyal Expansions

A continuous stochastic variable obeying the Langevin equation (3.67) with &-
correlated Gaussian Langevin forces (3.68) leads to a Fokker-Planck equation,
i.e., to the Kramers-Moyal expansion (4.14), which stops after the second term.
We have seen in the last section that for a generation and recombination process,
where the stochastic variable takes on only discrete values, the Kramers-Moyal
expansion has an infinite number of terms. An equation with an infinite number
of terms cannot be treated numerically and the question arises whether one can
approximate the infinite Kramers-Moyal expansion by a Kramers-Moyal expan-
sion truncated at a finite order. One may conclude from the Pawula theorem
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(Sect. 4.3) that the Kramers-Moyal expansion can be truncated only after the first
or second terms because the transition probability calculated from the Kramers-
Moyal expansion truncated at some finite term of the order N = 3 must have
negative values at least for small enough times. However, an approximate dis-
tribution function does not need to be positive everywhere. As long as the
negative values and the region where they occur are small this approximate dis-
tribution function may be very useful.

We now want to investigate the different approximations of expansion (4.14)
for the simple example [4.13] of the Poisson process, for which the master equa-
tion (4.61) reducesto /=1, x,,=m =0, G(m) = u, R(m) =0)

W(m,t)= uW(m—1,t)—uW(m,t). (4.65)
The solution of (4.65) with the initial value

W(m,0) = 6,0 (4.66)
is the Poisson distribution

W(m,t)=1"e /m! with t=yt. 4.67)

The cumulants K, (2.21, 25) of this Poisson distribution are all equal (K, = 7 for
nz1). If m is substituted by the continuous variable x(— o <x< o) and
W(x—1,1) is expanded into a Taylor series we get the infinite Kramers-Moyal
expansion

W)= ¥ u(—8/8x)" Wix,t)/n! . (4.68)
1

n=

If we truncate the expansion (4.68) after the Nth term we have

W, ) = 3 u(—8/8x)" Witx, £)/n! . (4.69)
1

n=

In the continuous case we should use as initial condition
W(x,0) = 6(x). 4.70)
In order to see how (4.69) approximates (4.67), we have to solve (4.69). By

making a Fourier transform with respect to x it is easily seen that the solution of
(4.69) with the initial condition (4.70) is given by

n=

o N
WN(x,t)=% | exp [ikx+ Zl(—ik)”ut/n!J dk . “.71)
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By performing the integration we easily get for N=1 and N=2
Wi(x,t)=0(x—1), 4.72)
Wy(x,t) = Qrt)~ Ve t-vP@n! (4.73)

For higher N the integration cannot be done analytically. For a numerical in-
tegration we write (4.71) in the real form

1 o IN/2] )
Wy(x,t)=—[exp| ¥ (—k?)"t/(2n)!
o m=1
IN-1)2]
xcos|kx—kt ¥ (—k»YQn+1)!|dk. 4.74)
n=0

Here [a] is the integer part of the number a and the sum has to be omitted if the
lower index is larger than the upper one. Due to the exponential function in
(4.71), however, only the approximations for N=1,2,3,6,7,10,11,... exist.
To compare (4.74) with the exact result (4.67) it is convenient to treat n as a
continuous variable in (4.67). We therefore use [I'(x) is the gamma function]

W, t)y=1e YT'(x+1), 4.75)

which agrees with (4.67) for integer x = 0. From the argument of positivity of the
distribution function we conclude that (4.65) can be approximated only by trun-
cation at N = 2, i.e., by a Fokker-Planck equation or the exact solution of (4.65).
Figure 4.2 shows the exact solution (4.75) together with (4.73) and higher-order

4 7 L
o~ X
T o 3 -
w i L
O'_ -
o . L
o -
T T T
A -2 0] 2 [A 6 8 10
X —»

Fig. 4.2. Plot of the exact distribution (ex) and of the finite-order approximate distributions (4.71) for
N=2,3,7,11 and 7 = 3. The approximation for N = 7 agrees with the exact distribution within the
linewidth. For the Poisson process only the positive integer values of x have to be considered
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Table 4.1. The exact normalization M(0) and the exact first five moments M(p), p=1,...,5 and
their successive approximations (4.76) for N=2,3,6,7,10,11 and =3

ApDrox. M(0) M) M@®) M@3) M@ M)
Exact 1.000 3.000 12.000 57.000 309.000 1866.000
2 0.980 3.025 11.963 54.063 269.835 1457.907
3 1.002 2.992 12.017 56.968 306.013 1817.669
6 1.000 3.000 12.000 57.004 309.088 1867.829
7 1.000 3.000 12.000 57.000 308.993 1865.893
10 1.001 2.976 11.522 47.337 115.036 ~1994.323
11 0.994 3.006 12.004 56.976 308.914 1866.233

approximations W) calculated numerically [4.13]. It may be seen that the main
virtue of W, is to be positive everywhere. Some higher approximations are closer
to the exact solution in the sense of least-squared deviation, as seen especially for
N =7 where no difference is perceptible. Like the exact solution (4.75), the dis-
tribution W is negative for some negative x values. For large x there are also very
small negative values of W;. As suggested from the numerical results even the
approximation N = 3, that is significantly better than that for N = 2, seems to
stay positive for all x =0 and therefore has properties similar to (4.75). As is
seen, furthermore, terms of order higher than N =7 tend to have larger mean-
squared deviations; so the approximation (4.71) seems to be a semiconvergent
series, converging only for 7— oo in the strict sense (for smaller 7 lower approxi-
mations seem to be better, i.e., N =2 for 7= 0.1). Table 4.1 shows the moments
if they are calculated either analytically (exact) or numerically by summing up the
approximations (4.71) at the integer values x = 0,1,2,...

My(@) = ¥ m?Walm,1). 4.76)
m=0

It is seen that the first higher-order approximations lead to more accurate
moments. This shows that (4.71) also converges to the exact distribution (4.75);
also this convergence seems to be asymptotic. It was found in [4.13] that the
even-numbered approximations to the distribution oscillate more than the odd-
numbered ones. The negative value of the fifth moment for N = 10 is a result of
negative values for large x. If the moments are calculated by integration

My@) = T xP W(x, t)dx

it may be seen that the cumulants up to the order p = N are identical to the exact
ones and that higher cumulants vanish. Therefore the moments M(p) agree with
the exact ones up to the order p = N.

Thus for certain parameters in the Poisson process the absolute amount of
negative values of the distribution function calculated by (4.69) for appropriate
N = 3 gets extremely small in the relevant region of variables, and the solution of
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the Fokker-Planck equation [i.e., (4.69) for N = 2] deviates from the exact solu-
tion much more than the solution of (4.69) deviates for some suitable N = 3
values. From this example we conclude that for approximate calculations of dis-
tribution functions, Kramers-Moyal expansion truncated at some suitable N = 3
term may sometimes be used. Because the convergence seems to be asymptotic,
its N value should not be chosen too large. (To estimate the appropriate N value
without knowing the exact result will, however, be a difficult task.)

4.7 Fokker-Planck Equation for NV Variables

For N stochastic variables

G=2u6 8y 4.77)

we proceed similarly to the one-variable case. We start with the extension of (4.1)
for N variables, i.e., with

W(x}, 1+ 1) = [P(x}, t+7|x'}, ) W(ix'), ) d™x' . (4.78)
In (4.78) the volume element is denoted by
dVx' = dx{dx}...dxk 4.79)

and N integrations have to be performed over the N variables (only one integra-
tion sign is written down). Denoting the ¢ function for the N variables by

O({x)) = 3(x1) 6(xz)...6(xn) , (4.80)
we may write
P}, t+7lx '}, 0) = fo(}— ) P(Y) e+ 7| (x'}, ) d Yy (4.81)

It is now convenient to use the summation convention, i.e., we perform the sum-
mation over latin indices appearing twice in the expressions without writing down
the summation signs. A Taylor series expansion at {y} = {x'} of the & function
appearing in (4.81) then has the form

()= {xp = o(x"}— x}+ = ix'D
= goﬁojl—le)(yjz—sz)...(ij—xj ——a——fé({x’}—{x})

1% / /
axj1 asz. . .axjv

= _ﬂ_ Wy, — ! Y n_
o v! aleax,-z...axjv (y“ X0y, X)), va)é({x} lxa.'&)

o8

v
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In deriving the last line we used
(8/8x{) 6(Ix "} — (xP) = (- 8/8x) S(Ix "} — {x}) .

The summation convention implies that we have to sum over the indices
JsJ2 - - - Jy- Inserting (4.82) into (4.81) yields

P, t+fix'}, 1)

_ &1 (-9’ W) ,
=11 _— = 7 MW . —
[ " v§1 vl 9x;0x;,...0x; etz bh T)J o=, @8

where the vth moment is defined by

M s BT = §0, =X 0= x7) ..., ~ X))
X Py} t+1|ix, 0)dVy. 4.84)

In deriving (4.83) we used in accordance with the one-dimensional case (4.10) the
extension of (4.6) to the N-variable & function and &({x}- {x'}) = o({x'}—{x}.
Expanding the moments for small 7 (4.12)

MW, j(xht,7y/vi =D, (O T+0(7Y, (4.85)

J15 25+ s 15J2:- 005 A

we obtain the forward Kramers-Moyal expansion for N variables by inserting
(4.83) into (4.78), dividing the resulting equation by t and taking the limit 7— 0:

aw(p, ny/or= v (9

DfY (L W(ix,e). (4.86)
v=10x;... ax;,

The solution of (4.86) with the initial condition

W'}, 1) = P(xh ' [ix'h 1) = o(fx}— k') (4.87)

is the transition probability P. Thus the forward equation for this probability
density reads

OP({x}, t]{x'},t')/0t = Lym(ix}, 1) P(x, t|{x '), 1) (4.88)
with

Lyn(ix}),0) = §1 ax(_%a)ax
v= jlu.- jv

.....

DY i (xh0). (4.89)

The corresponding backward equation takes the form

OP(fx}, t|{x'} £')/81" = — L (b ') P( £ (x'}, 1) , (4.90)
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oo aV
Liw(xhbty= ¥y DY (o —" | 4.91
0= £ DI (1) (4.9
where the initial condition reads
P({x,t|ix"}, 0) = o(fx}—{x) . (4.92)

The backward equation may easily be derived by extending the derivation in Sect.
4.2 to the N-variable case. Formal solutions of (4.88, 90) with initial conditions
(4.87, 92) are given by (4.17 — 19, 28, 29), where one has to replace x and x’ by {x}
and {x'}. The equivalence of the formal solutions of the forward and backward
equations may be shown by using the N-variable version of 4.31), i.e.,

AP oixi—ix'h = AT (XD o(x}-x'), (4.93)

as was done for the one-variable case. In (4.93) 4 ({x}) is an operator containing
functions and derivatives of the variables x;, ..., xy.

For a process which is described by the Langevin equation (3.110) with -cor-
related Gaussian Langevin forces (3.111) all coefficients D® with v = 3 vanish
(3.120). The transition probability then satisfies the equations (summation
convention, ¢ =t').

Fokker-Planck or Forward Kolmogorov Equation

OP({x}, t|{x'},t')/08¢t = Lpp({x}, t) P({x}, t|{x'},t') , (4.94)
a 2
Lyp({x},t) = ———Di({x}, ) + Dy({x}, 1), 4.95)
ax,- Xi %
Backward Kolmogorov Equation
OP(x}, t|ix'},t'y/8t" = —Lip(ix'}, tYP({x} tix'} ey, (4.96)
Lip(x'} 1) = Dy} 1) =24 Dy 1) —O . “.97)
’ ax; " dx/ dx]
The initial condition in both cases is
P(xtlixhy = P((x, ' |[{x'}, ') = o(x— {x7)) . (4.98)

If we multiply (4.94) by W({x'},¢') and integrate over x’ we obtain the Fokker-
Planck equation for the probability density W({x}, 1), i.e.,

OW({x},t)/8t = Lgp({x}, t) W(ix}, 1) . (4.942)
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In (4.95, 97) we omitted the upper index 1 in the drift coefficient and the upper
index 2 in the diffusion coefficient, because both coefficients are distinguished by
the number of lower indices. The drift coefficient or drift vector, the diffusion
coefficient or diffusion matrix are defined by [cf. (4.84, 85)]:

drift vector

D)0 = lim G+ D= G| @.99)

& () =2x;
diffusion matrix
Dij({x}’ t) = Dji({x}’ t)

. (4.100)

SO =2y

= Liim L+ 0 - a@lg e+ - 500D
2 =0T

where |, -, means that the stochastic variable ¢, at time ¢ has the sharp value x;
(k=1,2,....N

As seen from the definition, the diffusion matrix is a symmetric matrix. Fur-
thermore, it is semidefinite, which follows from (a; is an arbitrary vector, 7> 0)

2Dyai0; = lim —({[Ei(1+ D)= LOl a1+ D - G Olay

Si0) =X,
— tim L ({1&e+ 1) GOl Py =0. .101)
=07 &ty =%
Sometimes we assume that Dj; is positive definite, i.e.,
Djaa;>0 for aa;>0. (4.102)

Then the inverse of the diffusion matrix will exist.

4.7.1 Probability Current

The Fokker-Planck equation (4.94a) with (4.95) may be written in the form of
the continuity equation

W L85, (4.103)

at Ox i
where the probability current S;is defined by



4.7 Fokker-Planck Equation for N Variables 85

If the probability current vanishes at an N—1 dimensional surface F of the N-
dimensional space, the continuity equation (4.103) ensures that the total prob-
ability remains constant inside this surface F. If it is normalized to 1 at time
= ¢/, the normalization will always be 1, i.e.,
{ wixh,nd"x=1. (4.105)

V(F)
In (4.105) V(F) is the volume inside the surface F. For natural boundary condi-
tions the probability W and the current S; vanish at infinity and therefore the
normalization condition reads

fwixh,d¥x=1. (4.1052)
(If we do not indicate any integration boundaries, an integration from — o to
+ oo is understood.)
4.7.2 Joint Probability Distribution
As discussed in Sect. 2.4.1, the complete information of a Markov process is con-
tained in the joint probability distribution W,({x}, #; {x'}, ¢") which can be express-
ed by the transition probability density (4.98) and the distribution at time ¢/,

Wl £ 6}, 1) = PQx £} 1) WU 1) (4.106)
If the drift and diffusion coefficients do not depend on time, a stationary solu-

tion may exist. In this case, P can depend only on the time difference ¢t —¢’, and
we may write for the joint probability distribution in the stationary state for

t=t'
Woix), 64x"}, 1) = P(x} e =t [{ix'},0) Wy (') (4.1062)
t<t'

Walfxl, 64x '}, 1) = Wa(ix 'L, 5 (1) = POx ), 1 — ¢ |{x}, 0) Wy (Ix]) . (4.106b)

4.7.3 Transition Probability Density for Small Times
The extension of (4.52) for the N-variable case reads
P(xht+t)ix'l 6) = [1+Lep(fxh, 1) - T+ O] (fx}— x')) . (4.107)

If we insert the operator (4.95) here we may write up to terms of the order 72



86 4. Fokker-Planck Equation

(bt + 7|(x'}u 1)

i i)

) 0?
z[1—a D,-({x’},t)r+a 5 Dij({x’},t)f}é({x}—{x'})

) 9? ,
zexp[—gx—.Di({x’},t)T+ ord D,-J-({x'},t)r] (e —ix"].

i ey

Here we replaced {x} by {x'}in the drift and diffusion coefficient. By inserting the
J function expression

S({x—x'D = Rn)y Nexpliu; (x;— x))1du (4.108)
we obtain the extension of (4.55) to N variables
P, t+lix'}, 1) = @)/n) MDet Dy(ix'}, )1~

X exXp z— A% [D ‘1({x’}, Ol bxj—x; —D;(x"}, ) T [x — xp — Dy ('}, 1) T]} .
(4.109)

In (4.109) we assumed that the diffusion matrix is positive definite so that the
inverse of the diffusion matrix exists and Det{Dy} = 0. It may be shown in a way
similar to the one-variable case that the drift vector (4.99) and the diffusion
matrix (4.100) are recovered from (4.109), whereas all higher Kramers-Moyal
expansion coefficients vanish. Path integral solutions may be derived from the
transition probability density for small 7, i.e., from (4.109), in the same way as in
the one-variable case, Sect. 4.4.2, With this path integral solution it can again be
shown that the solution of the Fokker-Planck equation stays positive, if it was
initially positive.

4.8 Examples for Fokker-Planck Equations with Several Variables

We now list a few examples of Fokker-Planck equations with more than one
variable.

4.8.1 Three-Dimensional Brownian Motion without Position Variable

The equation of motion for the velocity of a particle without any external force is
the Langevin equation (3.21) with a Gaussian J-correlated Langevin force, whose
strength is given by (3.22, 13). Therefore we now have 3 variables and the drift
and diffusion coefficients read
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As is seen, the diffusion matrix is positive definite. The Fokker-Planck equation
takes the form [W = W (vy, vy, v3,1)]

2
LA (TN S
ot Ov; m  Qv;dv;

- y<vuv+EA.,> w. @.111)
m

In the last line of (4.111) we have introduced vector notation, the V operator and
the Laplace operator act with respect to the velocity coordinate. Equation (4.111)
describes a special Ornstein-Uhlenbeck process. The general solution of this pro-
cess will be given in Sect. 6.5.

4.8.2 One-Dimensional Brownian Motion in a Potential
The equations of motion for the velocity and position coordinate for the
Brownian motion of a particle in the potential mf(x) are given by (3.130) and the

corresponding drift and diffusion coefficients by (3.131). In this case the dif-
fusion matrix is singular. The corresponding Fokker-Planck equation

2
W00 _ _iv+_a_[yv+f'(x)]+£_a_2 Wx,v,t) (4.112)
ot Ox Oov m dv

is often called Kramers equation. In (4.112) mf’ (x) = — F(x) is the negative
force. This equation is investigated further in Chap. 10.

4.8.3 Three-Dimensional Brownian Motion in an External Force

For three-dimensional Brownian motion in an external field of force F x)

there are 6 coordinates. The Fokker-Planck equation then reads (W=
W(x1,x2,x3, Dy, U2, U3, t)]

2
ow [0, 0 ( B\ wr_ 2],
ot axi 81;,- m m 81},-81;,-

kT
={—VXU+VL)<}IU—£>+}}_AU]W. (4.113)

m m

In the last expression we have used vector notation.
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4.8.4 Brownian Motion of Two Interacting Particles in an External Potential

For Brownian motion of two particles with mass m;, m, in one dimension, the
Langevin equations are

. . , my+m,; 9
Xy =05 U= —pvy—foley) - ——2 " Swlxi—x2)+ 17,
™ ! (4.114)
. . , mi+m, O
Xy =033 Uy = — MUy —foly) — —= —fwlti =)+ 1.
m, 0x,

In (4.114) x; (x,) and v{(v,) are the position and velocity of the first (second) par-
ticle; mf,(x,) is the external force for the two particles and (m; + my) f(X1—X3)
2

is the interaction potential of the two particles. If we assume that the Langevin
forces I' and I'; acting on particles 1 and 2 are not correlated, then

kT

(MO T )y =2 3,,0(t—1) (4.115)

v

(no summation convention) and the Fokker-Planck equation for the distribution
function W = W(xy, v4;X;, 0; ) takes the form

AW/t = {— ;_ul + _a_[f;(xl) +

X1 801

my+my 8f,(X1—x3) + v
ny 8x1

_ 2
X | falx2) + my+my 8/, X2) + Py |+ VzLT— _8_2_ w.
m, sz m, ov3

(4.116)

A numerical solution of this equation for an external cos-potential and some
models for the interaction potential are given in [4.14].

4.9 Transformation of Variables

If instead of the N variables {X}=Xxy,...,Xy We use other new N variables
{x'} = x{,...,xj which are given by the old variables in the form

x! =xl(xht)=x]Cp, ... XN 1) P=1,0.,N, (4.117)

the Fokker-Planck equation (4.94a, 95) may be expressed in terms of the new
variables. It is the purpose of this chapter to find the transformation of the old
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drift and diffusion coefficients to the new ones. Though these new drift and dif-
fusion coefficients were already obtained in Sect. 3.4.2 by transforming the
Langevin equation (3.110), we now want to derive this transformation by using
only the Fokker-Planck equation (4.94a).

By going over from one variable system to another the probability in the
volume element does not change, i.e.,

walNx = w'd™x' . (4.118)
Because the volume elements are transformed according to the Jacobian J

dx/dNx' = J = |Det{8x,/8x}}| = 1/J' = 1/ |Det{dx//0x;}| , (4.119)
the probability densities W and W’ are connected by

W =JW=W/J". (4.120)

To find the transformation of the Fokker-Planck equation we must first know
the derivative of the Jacobian. Because

oxi 0% _ 5 (4.121)
ax, ox;

the cofactor or minor A”* of the element aj; = 0x//8x;is given by

Ak =y 9% (4.122)
oxy

Therefore we may express the derivative of J' with respect to the element

8" _ qik_ 0% (4.123)
Bajk Bx,’(

Using the chain rule we thus obtain

1 9 8lnJ _3lnJs 1 8 _ 1 8J' day

J Bxi Bxi Bxi J’ Bx,- J' aajk Bx,-
_Ox; 0 0dx; _O0x; 9 Oxi

- dx; Odx; 0x;  Ox; Ox; Ox;

L (4.124)

ax; ox;

Similarly, we obtain for the time derivative of J
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b fesy 1 o 1 g [ Bay
J\Ot/, J \ 8t/ J OBay\ 8t ),
_0x; (8 Bx _ dx; B [0x;
Oxp \0t/,0x; Ox; Ox; \ 8¢ /,

1<a_> _ 4.125)

Oxj \ Ot

The index x indicates that the old variables are kept constant. This index is
necessary if the transformation (4.117) depends on ¢. We obviously have

o) (o), (ex) 8 @126
ot ), \odr). \ 8t ), oxj

To express the derivative 3/3x; in terms of the derivatives of the new variables,
we, again, use the chain rule to get

0 ox; o _ 0 Oxy | @ Oxp|_ 9 Bx,’(_l_l oJ
0x; Ox; dx;p dxp Ox; |Odx, Ox;| Oxp ox; J Ox,
where the bracket indicates that the operator does not act outside this bracket.
Because

8181181

ox; J ox; J ox;
we get the useful result

0 _1 8 ¥, (4.127)

9%  9x, ox/ 1 9 8 dx; | ox! ;
dx; 0x; | ox;

2 ! ' 2 14
i 0 ox; 0x] 1 98 0 x; 7 (4.128)
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For the derivative with respect to ¢t we have similarly

EANSNEAVIENLY
or ), J\at). J\ot),
_afa) 1 ea) o, 1 far)
J\ot), I\ 8r /), ax; J\ar/,
axi\ ® _ 3 [oxp) | 8 [ax;
ar /. 0xp Oxi \ o /. | oxp \ ar /.
S AN LY
ox, \ 8¢t /., J\at),
i.e., we get

Dy _1/8)y, 1 3 [fax), (4.129)
at ), J\ot), J oxi \ 8t )

By inserting (4.127 — 129) into the Fokker-Planck equation (4.94a, 95) we easily
obtain the Fokker-Planck equation for the new variables [W' = J W, (4.120)]

’ 2

WY (8 by O _p\w, (4.130)
or /u oxj 0xj, 0x;
/ ] 2,
py= () Sk p | O p (4.131)
ar /., Ox; dx;0x;
Ox; Ox/

(=X 0% 4.132
“T ox, ox; ! @132

These transformed drift and diffusion coefficients agree with (3.128, 129).

4.10 Covariant Form of the Fokker-Planck Equation

The transformation to new variables may be seen best by writing the Fokker-
Planck equation in covariant form, i.e., in a form where only scalars, contra-
variant or covariant vectors and tensors and covariant derivatives occur. In this
chapter we restrict ourselves to coordinate transformations, which are inde-
pendent of time. If we go over to new coordinates x’ ’ which are functions of the
old coordinates x’ and vice versa, i.e.,



92 4. Fokker-Planck Equation

xi=x"et, ., xNy, i=1,...,N

, , 4.133
x=xix,. ., x' Y, ¢ )

contravariant vectors A’ and covariant vectors A4, are transformed according to

Soax't ax’
A'lt= ~A', Al=——_A;. 4.134
ax’ boaxt ( )
The coordinate differential dx’is a contravariant vector, i.e.,
. ! i .
dx'i= ¥ gy (4.135)
ox’

(therefore one usually puts the index of the coordinate in the upper place),
whereas the gradient of a scalar is a covariant vector, i.e.,

do ax/ d¢

= : _, 4.136
ox't  dx't ax’ ( )

A scalar is not changed by a coordinate transformation, i.e.,
o' =9. (4.137)

For the transformation of a tensor of rank »n with p contravariant and g = n—p
covariant indices we have to use 8x'/9x p times and dx/dx’ g times [4.15-17].
As seen from (4.132), the diffusion tensor DY = D;j(n = p =2)is a purely contra-
variant tensor

ax(k ox'’ =

Dk — DV (4.138)
ax;  Ox;

and the indices should therefore be put in the upper place. Obviously, the prob-
ability density is not a scalar because it transforms according to (4.120) and
furthermore the drift vector is not a contravariant vector because of the last term
in (4.131) (dx}/dt is zero because in this section we assume that transformation
(4.133) does not depend on time). Thus we first have to find a scalar W which
may be used instead of the probability density W and a contravariant vector D'
which may be used instead of the drift vector. Following Graham [4.18] (see also
[4.19]), we introduce a scalar W defined by

W=1]DetW with Det=Det{D%}. (4.139)
This transformation can be done only if Det > 0, i.e., if the diffusion matrix is

positive definite. Because of the transformation (4.138) it is easily seen that Det
transforms according to
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Det’ = Det{D' 7} = (Detdx' ¥/8x;)* Det (DY}
=J  Det{D¥} = J ?Det, (4.140)
where J is the Jacobian (4.119). We therefore have (W' = JW)
W' =1]/Det W =J )/Det/W=W, (4.141)

which shows that W is indeed a scalar. Next we introduce the contravariant drift
vector [4.18]

D]/i

> ij
ox’ |/ Det

which transforms in accordance with (4.134), as shown by the following
equation:

ax”‘D—,-= ax”‘D'_ ax”‘] Det 8 DY

(4.142)

ox' ox' ox’ ax’/ }/Det
2,0k _ | 1k rr i
DI a?c .D,,_ax. /Det 0 ax'JD
9x'dx’ ax' J ' ax Det
2.0k . 1k ' r ¥/
=D,’(—-9—.x——.D”— Det’ d Ox . ox . D
dx'9x’ ax'" 8x' 9x/ |/Det
1k it Py
Det’ 0 ox . ox 4 D
dx'" 9x' ) ox’ |/Det
~ kr
= D}, —|/Det’ 8 DT _pik, (4.143)

In deriving (4.143), in the second line we used (4.127, 131) and in the third line,
(4.140), the chain rule, (8x’ /8x7) 8/8x' " = 8/9x/ and (4.138).
Instead of (4.104) we now use the contravariant probability current

(4.144)

The contraction of a contravariant tensor of rank 2 with a covariant vector
A;= dW/dx/ [which appears in (4.144)] is a contravariant vector as may be seen
by the transformation law

. o ri 1j s i _
Bi=prigy= % 07 O puy O 5 bha,
axk ax” ox'/ ax*

ax! l
Bx

Bk
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Next we must find an expression for the divergence of a vector. We have already

seen that the derivative of a scalar, i.e.,

W, = _a_ui , (4.145)
ox'
is a covariant vector. It is easy to show that
(4.146)

SI

= 9
S!,’E I/ Det -
’ dx' |/Det

is a scalar, which is the desired expression for the divergence of a vector. From

(4.127, 140) we have

Srk _
Det —_ - St (“.147)
0x'“ |/Det’
Thus the equation
OW/dt=-S!;=[-D'W+D" W,
— /et ! -D'W+ DV oW (4.148)
dx' |/Det ax’

has the correct covariant form, i.e., it has same the form for every coordinate
transformation. Using (4.139, 142), it is easy to show that (4.148) is identical to
the Fokker-Planck equation (4.94a), i.e.,
oW 0 DV
Det —— = |/Det _ D;|/Det W+ |/Det
ot ox’ ]/ Det { [axf |/ Det }

X |/Det W+DU3——M} ,
ox/

oW ] 0 DY — . 3)/Det W
— {—-D,W+ | — J/Det W + DY -

ax’ 1/De
_0 < o+, W>

The comparison with tensor analysis [4.15 —17] shows that the diffusion matrix
(4.100) may serve as the contravariant metric tensor [4.18], i.e
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gij=D_ij=D~<.

iy

(4.149)

The covariant metric tensor 9= D,J is then the inverse of the diffusion matrix
(4.100), i.e., g;= (D~ ),J The Christoffel symbols of first and second kinds and
the Rlemann curvature tensor are expressed by the metric tensor in the following
way [4.15-17]:

99u | B9 _ dgy
[, k] = < ol axj" - axl’J‘ : (4.150)

Ukl = 9" ik, 11, (4.151)
Ri' vl {lk} {u}+ {MJ}{lk} lmk}{l’jn} (4-152)

If the Riemann curvature tensor vanishes the space is Euclidean. By using a
proper coordinate transformation, the metric tensor and therefore also the dif-
fusion tensor can then be reduced to the metric tensor of Euclidean cartesian co-
ordinates [4.17], i.e., to

9'=g;=DV=3¢;. (4.153)

If the Riemann curvature tensor does not vanish, it is impossible to find a trans-
formation where (4.153) is valid globally (it may then be valid only locally, i.e.,
near some fixed point {x,}). If we have only one variable, the Riemann curvature
tensor always vanishes. Then we can find a transformation so that the diffusion
coefficient D® > 0 is normalized to unity, see also Sect. 5.1. For two variables
with Dy, = D,; = 0 for instance the Riemann curvature tensor vanishes only if

3] 0 1 0 3]
— /DDy, + /' Dy1Dyp——

1 _o (4.154)
8x1 8x1 D22 sz sz Dyy

is fulfilled.



5. Fokker-Planck Equation for One Variable;
Methods of Solution

We now want to discuss methods for solving the one-variable Fokker-Planck
equation (4.44, 45) with time-independent drift and diffusion coefficients,
assuming DP(x) >0

dW(x, 1)/t =LgpW(x,t)=—(0/8x)S(x,1), G.1)

Gl 8’
Lep(x)= ——DPx)+ — D). (5.2)
ox ox

In (5.1) S is the probability current (4.47).

The stochastic Langevin equation (3.67), for instance, with Gaussian J-cor-
related Langevin forces and time-independent # and g leads to (5.1, 2) with
D®(x) and DV (x) given by (3.95).

The Smoluchowski equation (1.23) describing one-dimensional Brownian
motion of a particle in the potential f(x) in the high-friction limit is a special case
of (5.1, 2), where the drift and diffusion coefficients are given by

DD = (my) 'Fx) = —(my) ' f(x), (5.3)
DP=kT(my)~"'. (5.9

In (5.3) F(x) = —f (x) is the force due to the potential f(x), mis the mass of the
particle, y is the friction constant, k is Boltzmann’s constant and T is the tem-
perature of the surrounding heat bath. The derivation of this Smoluchowski
equation from the two-variable Fokker-Planck equation in position and velocity
space (i.e., Kramers equation) is discussed in detail in Sect. 10.4.

5.1 Normalization

By a suitable transformation x' =y = y(x) the x-dependent diffusion coefficient
can be transformed to an arbitrary constant D > 0. For the one-variable case this
transformation according to (4.132) reads
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dx

Thus this transformation is given by

y=y(x) = {|/D/DO@) de. (5.6)
X0

The transformed drift coefficient then takes the form [see (4.131)]

D’ (1)0,) D(l)(x) + = D(Z)(X)

_ Do 1 dD(x)
|/—D(2)(x) { (x) - T a (5.7

and the transformed Fokker-Planck equation reads (D = const)

W' (y, 1) 9 0* ,
A AL A DU 5 +D— |W(,1), 5.8
or [ oy ») ay? } 0.0 ©-8)

where W' is given by, cf. (4.119),
W'=J.-W=dy/dx) 'W=|/D®x)/DW. (5.9)

In (5.7 and 9) x = x(») has to be expressed by the y variable according to (5.6).
Without loss of generality we may thus treat the equation with constant diffusion
coefficient, i.e.,
2
oW _ —f’(x)+D6— L T (5.10)
ax2 ox

ot

where S is the probability current.
Here we have introduced the potential

fx)= - ?D“’(x’)dx’ . (5.11)

Up to a constant the potential (5.11) agrees with the potential f of the
Smoluchowski equation.

Because D is arbitrary, we may use D = 1. This normalization is, however,
not very convenient if the low-noise limit D — 0 is considered and we therefore
retain the constant D.

Transformation (5.6) can also be done in the Langevin equation, see (3.69,
70, 95).



98 5. Fokker-Planck Equation for One Variable; Methods of Solution

5.2 Stationary Solution

For stationary solutions the probability current in (5.1) must be constant. Thus,
if the probability current vanishes at some x the current must be zero for any x.
Then for S=0

D (x)

DD (x) Wy (x) = o D) Wy(x) = a_D%‘) W (x) . (5.12)

We can immediately integrate (5.12), yielding

(6]
W) = {Z() Xp<5§mzx;d > =Ne™ %, (5.13)

where NV, is the integration constant, which has to be chosen such that Wy i
normalized. In (5.13) we introduced the potential

X D(l)(x’)

&(x)=InDPx) — SDT(x') (5.14)

For the case of the Smoluchowski equation (5.3, 4) we may put @(x) =
f(x)/ (kT) and for (5.10) @(x) = f(x)/D because the potential @(x) is defined
only up to an additive constant and therefore the InD® term may be omitted.
Introducing this potential the probability current may be written in the form

S0, 1) = —DP(x)e- ‘P(x)ai [ 2O Wx, 1) . (5.15)
X

In the stationary state, where § is constant, we thus have for arbitrary S

e P60

_ - o) _ - P(x)
Wa(x) = Ne Se SDT(x)

dx’ . (5.16)

One of the integration constants in (5.16) is determined by the normalization
[Wax)dx=1, 5.17

the other constant must be determined from the boundary conditions, so the
problem arises as to which boundary conditions must be used. (For a further dis-
cussion of boundary conditions, see Sect. 5.4.) For problems where x extends to
+ oo, we require that the integral (5.17) exists. In that case, W and also S must
vanish at + oo (natural boundary conditions) and therefore S = 0 for every x. If
the stochastic variable £ cannot reach values smaller than x,,;,, we require that the
probability current must be zero at xp;,. In the stationary state, S then also
vanishes for every x, i.e., (5.16) reduces to (5.13). There may, of course, also be
other boundary conditions. If for instance x is an angle variable we usually
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require that the distribution function is periodic. In that case, S is determined by
this periodicity condition. The current will then be zero only if f(x) is also
periodic. For a further discussion of boundary conditions, see Sect. 5.4.

An important question is whether every initial distribution finally decays to
the stationary distribution. For some restrictions of the drift and diffusion coef-
ficients and of the boundary conditions one can prove that any two solutions of
the Fokker-Planck equation agree for large times. Thus if a stationary solution
exists, every solution must finally decay to that solution. We postpone the deriva-
tion of the proof to Sect. 6.1, where a proof is given for the general N-variable
case. We further show in Sect. 5.4 that all eigenvalues with the exception of the
stationary eigenvalue A = 0 are larger than zero, which also answers the above
question positively.

5.3 Ornstein-Uhlenbeck Process

Nonstationary solutions of the Fokker-Planck equation (5.1, 2) are more
difficult to obtain. A general expression for the nonstationary solution can be
found only for special drift and diffusion coefficients.

Wiener Process

A process which is described by (5.1, 2) with vanishing drift coefficient (D = 0)
and constant diffusion coefficient D®(x) = D is called a Wiener process. The
equation for the transition probability P = P(x,t | x',#') is then the diffusion
equation

2
orP _,08P (5.18)

ot ax?2
with the initial condition
P, t'|x,t')y=d8(x—x"). (5.19)

The solution for >¢' reads [5.1]

P(x,t]x't') = (5.20)

1 (x—x’)2
R — ) { o (I A A
/4nD(t—1') 4D(-1")
The general solution for the probability density with the initial distribution
W(x',t'} is then given by

Wi(x,t) = (P(x,t]|x,t") W(x',¢t')dx' . .21

Thus the transition probability serves as the Green’s function of (5.18).
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For the Ornstein-Uhlenbeck process the drift coefficient is linear and the
diffusion coefficient is constant, i.e.,

Ornstein-Uhlenbeck Process
DW(x)= —yx; DPx)=D=const. (5.22)

With these coefficients the Fokker-Planck equation is the same as the
Smoluchowski equation for a harmonically bound oscillator. In this case
¥ = w3/m is positive.

The equation for the transition probability now reads

aP ) 3’
T ya(xP)+D——ax2 P (5.23)

with the initial condition (5.19). The solution of (5.23) is best found by making a
Fourier transform with respect to x, i.e.,

P(x,t|x, 1) = Qm) e Pk, t|x',t")dk . (5.24)

The equation for the Fourier transform is given by (replace 8/9x by ik and x by
10/0k)

%: —yka—akﬁ—Dkzﬁ, (5.25)

which is simpler than (5.23) because only first-order derivatives with respect to k
occur. Because of (5.19) the initial condition for the Fourier transform is

Pkt |x, ") = ek (5.26)

The first-order equation (5.25) may be solved by the methods of characteristics
[5.1]. The solution of (5.25) with the initial condition (5.26) reads (¢ >1')

B(k,t|x',1') = exp[—ikx'e "= —Dk*(1 —e )/ 2y, (5.27

as may easily be checked by insertion. By performing the integral in (5.24) [cf.
(2.32)] we finally get the Gaussian distribution (¢>1')

y ylr—e M xry?
P(x,t|x',t')= — exp| — . . (5.28
(£l e) \/ 27D —e 1) p{ 2D —e 271 29

In the limit y— 0 we recover the result (5.20) for the Wiener process.
Equation (5.28) is valid for positive and negative y. For positive y and large
time differences y(f—¢') > 1, (5.28) passes over to the stationary distribution
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Wy(x) = |/7/(2nD) exp[— yx*/(2D)] (5.29)

in agreement with (5.13). For y =0 no stationary solution exists.

The Ornstein-Uhlenbeck process may equally well be described by a linear
Langevin equation of the type (3.1) with Gaussian Langevin forces. The
stochastic variable and the Langevin force are then connected by the linear trans-
formation (3.7). Because for a linear transformation of variables Gaussian distri-
butions will remain Gaussian (see the remark at the end of Sect. 2.3.3), the transi-
tion probability must also be a Gaussian distribution.

Joint Probability Density

In the stationary state the joint probability density for the variables £(¢) and £(¢')
may be expressed by P and W,,. For t=¢'

I'Vz(x,t;x’,t’)=P(x,t|x’,t’) I'Vst(xl)9 (530)
and for r=<t/,
Wrlx,t;x',¢") = P(x',t' |x, 1) Wy(x) . (5.31)

By inserting (5.28, 29) in (5.30, 31) we obtain in both cases

2 12 1A It—t'l
x“+x'"=2xx'e”?
Wi(x, t,x',t') = Y exp <— y > .

22D}/ 1—e 2771 2D(1—e 21T
(5.32)

For large time differences y|t—¢'|> 1, (5.32) decomposes into a product of two
stationary distribution functions (5.29), meaning that the distributions for x and
x' become independent.

5.4 Eigenfunction Expansion

In this chapter we are looking for nonstationary solutions of (5.1, 2). A
separation ansatz for W(x, t)

Wi(x,t) = p(x)e " (5.33)
leads to
Lypp=—4g. (5.34)

Here ¢(x) and A are the eigenfunctions and eigenvalues of the Fokker-Planck
operator with appropriate boundary conditions. Before we proceed it is
necessary to talk about boundary conditions.
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Boundary Conditions

If the potential @(x) (e.g., f(x) for x-independent diffusion) jumps to an infinite
high positive value, the particles cannot penetrate in the region x >x,,, and
therefore the probability current S must vanish at that point. The infinite high
potential then acts as a reflecting wall (Fig. 5.1a). If the potential jumps to an
infinite large negative value it follows from the continuity condition for the prob-
ability current that e ® W should vanish at this point (5.84). In this case we talk
about an absorbing wall (Fig. 5.1b). For the left boundary at x = x;, similar
considerations are valid. Because of the two possibilities at each side, there are
four possibilities B1...B4, as shown in Table 5.1.

For finite X and X, € ?W = 0 requires that W should be zero. If D(x)
goes to plus infinity for x— + o (e.g., @ = ax?), we have a reflecting wall at
Xmax— + % and x,;;— — o and the probability current should vanish there. It
then follows from the Fokker-Planck equation that ﬁm W(x,t)dx is constant
(4.48), and that this constant is equal to 1, if it is initially equal to 1. This
normalization requires that the distribution function W goes to zero for x— =+ .
(As seen for the parabolic potential in Sect. 5.5.1 e ? W, however, remains finite.)
This boundary condition is called natural boundary condition. It may also
happen that &(x) goes to minus infinity for x— + o or for x— — o or for both
x— + oo, In this case we require in analogy to (5.84) that e ® W is zero at x— + o
or at x— — o or at both x— + oo, respectively. As shown in Sect. 5.5.2 for the
inverted parabolic potential, W and S are then finite but e ® W vanishes at
x— =+ oo, Thus for the boundary condition in Table 5.1 x_;,, x4 or both can
reach — oo, + o or =+ oo, respectively.

To obtain eigenvalues by numerical integration for potentials, where @(x)
goes to plus infinity for x— + oo, we may require that S = 0 at x = + A for some
large A. Alternatively, we may require that W =0 at x = + A. Though at finite
A the eigenvalues for the S = 0 condition will be different from the eigenvalues
of the W=0 condition, both eigenvalues will coincide in the limit A4 — co.
(Obviously, we cannot require that both S and W are zero at x = +A4 with
finite A.) /

Besides these boundary conditions we may have periodic boundary condi-
tions with period L. If, for instance, x is an angle variable and if we do not distin-
guish whether a full rotation is made or not, the distribution function and
therefore also the probability current must be periodic with period L = 2 7. These
periodic boundary conditions can be fulfilled only if the drift and diffusion coef-

; ;
Xmax Xmax

Fig. 5.1.
(@) {b) Reflecting (a) and absorbing (b) wall
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Table 5.1. Boundary conditions discussed in the text

xmax
S = 0 (reflecting wall) e? W = 0 (absorbing wall)
Xmin
S = 0 (reflecting wall) B1 B2
e? W = 0 (absorbing wall) B3 B4
Natural boundary conditions:
§=0 for xpu—o—9, X+

8 max
(e. Bl for x> —o, X+ )

Periodic boundary conditions:
Wx,t)y=Wx+L,t), Sk t)=Sx+L,1)

ficients are also periodic with the period L. An example of this boundary condi-
tion is given in Sect. 11.3.

A stationary solution can occur only for the boundary condition B1 (this
includes natural boundary conditions) or for periodic boundary conditions. In
the first case, the stationary solution of the Fokker-Planck equation is given by
(5.13), for the other, by (5.16).

Transformation of the Fokker-Planck Operator

The Fokker-Planck operator (5.2), which may be written in the form, cf.
(5.1, 15),

Lip=-0 DOxye-20 0 o (5.35)
ox ox

is obviously not a Hermitian operator. If the two functions W, and W, both
satisfy the same boundary conditions listed in Table 5.1, we have

*max »
{ Wie®L gp Wydx
*min

*max

= | I/Vle‘paiD(Z)e_‘p—éa—e‘szdx
x x

*min

*max ) Fo)
=- | {G—Me‘p}D(Z)e‘QD[a_e‘pW{Idx
X, X X

‘min

*max

= | er“"iD@)e—“”_a_ Wie®dx
Xmin ax ax

xlTlB.X

= | Wye®L pp Widx. (5.36)

*min
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In deriving the third and the fourth line we have used partial integration and

xmax xmax
Wle‘I’D(Z)e“pie‘sz =-We?s,| =0. (5.37)
2 ox 1 2 1

*min *min

Hence for all boundary conditions of Table 5.1 the adjoint of the operator e ?L gp
is given by

(e®Lep)* =Lipe®=e%Lgp, (5.38)
i.e., e ?Lyp as well as

L=e 2% pe=¥2= e ¥ pe= 2 (5.39)

is an Hermitian operator.

Orthogonality of Eigenfunctions

The eigenvalues may be discrete or continuous or both. In the following we use
the notation for discrete eigenvalues denoted by an index n. If continuous eigen-
values occur, one should proceed in the same way as discussed in quantum
mechanics [5.3], i.e., the Kronecker symbol d,,, has to be replaced by the §
function and the occurring sums by integrations. If ¢,(x) are the eigenfunctions
of the Fokker-Planck operator Lgp with the eigenvalue A, (5.34), the functions

wax) = e ?2g,(x) (5.40)
are eigenfunctions of L with the same eigenvalues 4,
Ly,=-Ay,. (5.41)

Because L is an Hermitian operator, the eigenvalues are real and two eigenfunc-
tions 4 and i, with different eigenvalues A; + A, must be orthogonal. If we
normalize the eigenfunctions we thus have the orthonormality relation

*max Xmax
jl YnWmdx = s eq)(pn(pmdx =Oum- (5.42)

Xmin Xmin

Positivity of Figenvalues

By using the first and the third line of (5.36) with W, = W, = ¢,(x) and (5.35)
we get
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X *max

§ ¢ne¢LFp¢ndX= § wil w,dx= -2,
Xmin *min
*max a 2
_ <a_ .,,ne¢/2> DPe ?dx 0. (5.43)
*min X

The equals sign in (5.43) is valid only for the stationary solution
Wolx) = |/Ne ?®72; }4=0. (5-44)

All other eigenvalues A, (n =z 1) must be larger than zero. For finite potentials
@(x) a stationary solution cannot exist for the boundary conditions B2 — B4.
Thus all eigenvalues are larger than zero for these boundary conditions. For
(5.44) to exist under natural boundary conditions, ®(x) must be positive and
increase with increasing |x | at least asymptotically.

Other eigenfunctions with A, > 0 can exist for asymptotically negative ®(x),
with appropriate boundary conditions, see the example in Sect. 5.5.2.

Completeness Relations

Eigenfunctions of Hermitian operators usually form a complete set [S.1, 2, 4].
The completeness relation for the eigenfunctions , or ¢, may be expressed by

S(X=X") = £ yn(X) walx")
= e PW/2+ D(x')/2 T 0,(0) 9,(x")
=79 L 0,() pn(x")
=)L 0,(0) 9, (x") . (5.45)

Transition Probability Density

By using the last expression of (5.45) to represent the § function and the formal
solution (4.17) for the Fokker-Planck operator, we immediately obtain the
expansion of the transition probability into eigenfunctions (¢=¢')

P(x, t|x',t') = elme@U-1 50 _x7)

=e P L tr=Ng, () g, (x")
n

=e?™) ¥ 0, (x) g (x") e M=)
n

— e<1>(x’)/2—<1>(x)/2 E l//n(X) Wn(x’) e—ln(l‘~t’) . (5.46)
n
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Joint Probability Density
In the stationary state the joint probability density for the variables &(¢) and &(¢')

may be obtained from (5.30, 31). If the stationary distribution W, (x) = [wo ()]
exists, we have

Wa6, X', 1) = YoX) wox") T w,(x) w(x'y e~ Ml 01 (5.47)
n
The symmetry of W), i.e., Wi(x,5x',t’) = Wy(x',t';x, 1), is immediately seen.

Explicit Form of L

Because of (5.35) the transformed operator (5.39) takes the form

I = eqb/zai] /D(z)e—qb/z] /D(z)e—qb/zaie«p/z: _éa, (5.48)
x X

where a and 4 are defined by

a=1/D®e-229 _on
ox
@
- D(Z)a—i + % <fo - D<1>> / /D®, (5.49)

6= _e‘i’/Zi] /D@ -9/
ox
@
__98 D<2>+i<dL_D<0>/]/D<2>. (5.50)

ox 2 dx

The second lines follow by use of (5.14).

For natural boundary conditions @ and 4 are the adjoints of each other, i.e.,
d=a*. It then also follows from (5.48) that all eigenvalues A must be non-
negative. By inserting the last expressions for @ and @ into (5.48) we get the
operator of the Sturm-Liouville equation [5.1, 2, 4]

L=2pold (5.51)
Ox Ox

Q@ 2 ) 21
V(x)=i o~ o) ,po, 1 4D 1 d D2 ) (5.52)
4 dx 2 dx 2 dx
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The eigenvalues are usually arranged in increasing order

The first eigenfunction y, has no zeros, the next eigenfunction y; has one zero
and so on [5.2]. If a stationary solution exists the first eigenvalue A, is zero;
otherwise it is larger than zero. Whereas a degeneracy cannot occur for the
boundary conditions B1 — B4, it can occur for periodic boundary conditions, see
Sect. 11.3.2 for an example.

Transformation to a Schrodinger Equation

By using a proper transformation of the variable, the one-variable Fokker-
Planck equation can always be transformed to (5.10) where the diffusion con-
stant is x-independent. Then L has the same form as the negative single-particle
Hamilton operator in quantum mechanics, i.e.,

2
L =D%— Ve(x) (5.54)

with the potential

Vs@) = 1/ )/ D — Lf" (x). (5.55)
For the potential @ (x) we may now use

&(x) = f(x)/D (5.56)
because we can neglect the additive constant InD (5.14). The form (5.55) guar-
antees that the eigenvalue of the stationary solution g, = [/}T’exp[— Jx)/2D)]

is zero. The eigenvalue problem (5.41) is the same as the eigenvalue problem of
the Schrodinger equation. The operators ¢ and 4 simplify to

=P L L L0 Vﬁexp<_1 &>L"p<i &)

ox /D 2 D/ ox 2 D
(5.57)

Y, - f'(x)z_‘/BeXpG S )>ieXp<_i f(x)>

X
ox 2 D 2 D/ ax 2 D

and their commutator is given by

ad—aa=f". (5.58)

If the transformation (5.40) is applied to the probability density W(x,¢), the
Fokker-Planck equation (5.10) is formally equivalent to the time-dependent
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Schrodinger equation with imaginary times Zggsq = —i/4¢ and with a mass given
by Mschrsa = ”%/(2 D). Transformation of an equation of the type (5.1, 2) to the
Schrédinger form is also found in [5.2, 4].

5.5 Examples

We now want to discuss the eigenvalues, eigenfunctions, the potential f(x) and
the potential Vg(x) of the corresponding Schrédinger equation for some
examples. We first notice that every soluble example of the Schrédinger equation
may serve as a soluble example of the normalized Fokker-Planck equation (5.10)
[5.5—9]. From (5.44, 56) the potential f(x) of the normalized Fokker-Planck
equation is then expressed by the lowest eigenfunction y(x) of the Schrodinger
equation

f&x) = -2DInyy(x)+DInN

S %) = =2Dy(x)/ wo(X) -

(5.59)

Here we have assumed that the stationary solution exists, i.e., that the eigenvalue
Ao is zero. As will be seen from the third example, simple forms of the potential
Vs(x) of the Schrodinger equation may lead to complicated forms of the
potential f(x) of the Fokker-Planck equation. This is also seen in [5.6, 7] where
simple bistable models for Vg(x) (potential box with a square barrier in the
middle) lead to more complicated expressions for f(x). In Sect. 5.7 it is shown
that for simple expressions of f(x) (i.e., a box with a rectangular barrier in the
middle) eigenvalues and eigenfunctions can also be obtained.

5.5.1 Parabolic Potential

For the parabolic potential of the Fokker-Planck equation
fe)=1yx*; >0 (5.60)

the potential (5.55) of the Schrodinger equation is also parabolic

Vsx)=1y <%x2 - %) . (5.61)

Introducing the boson operators similar to ¢ and 4 in (5.57)

po @ _ L (8 N L]/
At
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bu%:%(-%%); bb*t—b*th=1, (5.62)

the transformed Fokker-Planck operator (5.48) takes the form
L=—yp*bh. (5.63)

Eigenvalues and normalized eigenfunctions are given by the well-known expres-
sions [5.3]

Ap,=yn; n=0,1,2,...
4
Y -8
Wolx) = |/ ——e (5.64)
0 27D
4

@G o=/ =2 — L m e,

l/’i ’ 27D V2"n!

where H, (x) are the Hermite polynomials.
If we apply the following summation formula for the Hermite polynomials
([5.101; |a]< )

Wa(x) =

§ H(x)H )= exp{ 4a2(xy~ax2—ay2)], (5.65)
n=0 1-40° 1-4a

we recover from (5.46) the transition probability (5.28) and from (5.47) the joint
distribution (5.32) for the Ornstein-Uhlenbeck process.

5.5.2 Inverted Parabolic Potential

For the inverted parabolic potential

foy=—4px; >0 (5.66)
no stationary solution exists. Nevertheless we can make the transformation
(5.39, 40) with &(x) = f(x)/D= — + L yx2/D and obtain the following potential
Vs(x) of the Schrodinger equation:

— {7y 1 _
Vs(x)=9% <Z%-x2 - ?> +¥. (5.67)

A comparison with (5.61) shows that the normalized eigenfunctions are the same
as in Sect. 5.5.1 with y replaced by %, i.e.,
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4
_ 1 ) = y

- H ¢, =/ <= 5.68
W) = | 57— M@ ; |/ Lox (5.68)

and that the eigenvalues are raised by 7, i.e., they start with 4o =¥

~<I

b=9(n+1); n=0,1,2,.... (5.69)

(By formally changing y to j in (5.62) and £ in i it is seen that —a/l/§ now
becomes a creation operator b and correspondingly that —4/ [/5 now becomes
an annihilation operator b, cf. Sect. 5.8.)

Using both (5.46, 65) we obtain

- S SH—1) N2 o
P(x, t|x',t') = ‘/2 D y—Z?(t—t’) exp<— ;(1)361 —zi(t—xz’)) >e—y(t—t)’

which is identical to (5.28) if y in (5.28) is replaced by — ¥. Though no stationary

solution exists for an inverted parabolic potential, eigenfunctions with the

boundary condition B4 in Table 5.1. for Xx,— o do exist, they can be
min

normalized according to (5.42) and they may be used to calculate the transition

probability. (The probability current S for these eigenfunctions is finite for

X— +00.)

5.5.3 Infinite Square Well for the Schrodinger Potential

One of the simplest eigenvalue problems for the Schrédinger equation is the rec-
tangular-well potential with infinitely high walls, Fig. 5.2. The lowest eigenfunc-
tion wo(x) = a ~ % cos[nx/(2a)] for —a<x<a leads to the potential (5.59)

f(x)= —2DIn{cos[nx/(2a)]} (5.71)
of the Fokker-Planck equation, plotted in Fig. 5.2. [In (5.71) we have normalized
the potential by f(0) =0, i.e., N= a~'.] At x = +a the potential f(x) becomes
singular. It may easily be checked that the probability density as well as the prob-

ability current are zero at x = + . Higher eigenvalues and normalized eigenfunc-
tions of the transformed Fokker-Planck operator (5.54) are

even solutions (n=1,2,...)
Ay =Dmla " (n*+n), (5.72)

W, (x) =a"2cos[(n+1/2) nx/al, (5.73)
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fix) Fig. 5.2. Rectangular-well potential
2D V(x) and the corresponding potential
f(x) of the Fokker-Planck equation,
(5.71)
Vix)
H1
a 0 aly - Lo
12D
4a
odd solutions (n =1,2,...)

Aan1=Drla *(n®-1/4), (5.74)
Wan_1(x) = a V2sin(nnx/a) . (5.75)

The transition probability for the potential (5.71) is obtained by inserting
(5.72—-75) into (5.46).

5.5.4 V-shaped Potential for the Fokker-Planck Equation
If the potential of the Fokker-Planck equation is given by the V-shaped form
J&x)=D«kl|x|; k>0, (5.76)
the Schrodinger potential Vs(x) consists, see (5.55), of an attractive o potential
Ve(x) = Dk*/4-Dxd(x) . (5.77)
Only the stationary eigenfunction
volx) = |/i/2e~ V2 (5.78)

has the discrete eigenvalue Ay= 0. The other eigenvalues form a continuum
k>0

Ay=Dr*4+Dk?: (5.79)

their eigenfunctions normalized to the J function are [5.11]
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wi(x) = [(4k*+ kD7)~ Y22k coskx — ksink |x|)
(5.80)
wi(x) =~ 2sinkx.

The symbols s and a indicate even or symmetric and odd or antisymmetric eigen-
functions.

The transition probability for the potential (5.76) is obtained from (5.46),
where the sum in (5.46) must be replaced by an integration over k for the con-
tinuous eigenfunctions while the discrete eigenfunctions must be retained as a
single term.

5.6 Jump Conditions

For the Schrodinger equation one often uses potential models where Vs(x) jumps
at certain points of x and is constant elsewhere. One may ask whether such
models may also be used for the potential f(x) of the Fokker-Planck equation.
As is seen from (5.55), jumps of the potential f(x) lead to higher singularities
(first derivative of the d function and square of the ¢ function) for the potential
Vs(x) than & function singularities which are usually treated in quantum
mechanics. We first derive the jump conditions for the unnormalized Fokker-
Planck equation (5.1, 2) and then specialize the result to the normalized Fokker-
Planck equation (5.10).

Finite Jump

We assume that a finite jump of the potential @(x) (5.14) occurs at x = 0.
A finite jump may occur either if the diffusion coefficient D(z)(x) has a finite
jump or if the drift coefficient DP(x) has a J function singularity. If we assume
that the time derivative of the probability density is finite at the jump, it follows
from the continuity equation (4.46) that the probability current (5.15) must be
continuous (d/9x is denoted by a prime)

S(+0,1) = —DO(+0)[®' (+0) W(+0,0)+ W' (+0,)]
=8(=0,0)= —DP(-0)[®'(—0) W(-0,1)+ W'(-0,)]. (5.81)

Here lin}) f(+ |e|) was abbreviated by f(+0). (If the probability current would
&

not be continuous at x = 0 this would mean that at x = 0 particles are added or
removed, i.e. that we have a probability source or sink at x =0.) Furthermore it
follows from (5.15) that we may write

ai [e?O W, 0] = —S(x, e /DO (x).
X
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By formally integrating this expression we get
€
e?OW(+0,0)—e?®COW(-0,0) = —lim [ S(x,1)e®®/DP(x)dx.
-0 _¢

If only finite jumps in &(x) and D@ (x) > 0 occur, the integral vanishes for ¢ -0,
i.e., we have

e?COW(+0,n=e*"OW(-0,1). (5.82)

Equations (5.81, 82) are the jump conditions for the probability density.

Infinite Jumps
If the integral in (5.14) is finite for x < x,,; but has an infinite positive value for

X > Xmax DO diffusion into the region x > x,, can occur. Therefore the prob-
ability current (5.15) must be zero for x = x,,, i.e.,

D' (Xmax) Wnaw £) = — W X pan 1) - (5.83)
If the integral in (5.14) is finite for x < x,;,, but has an infinite negative value for
X > Xnax and if we assume that W(x,?) is finite for x > x,, it follows from the
jump condition (5.82) that exp(®) W must be zero for x - x_,;,, i.e.

exp[ P (Xpax— O)] W(Xpax—0,7) = 0.

For finite @(x,,— 0) this reduces to the condition that the probability distribu-
tion itself must be zero for x — x,,,

W(xpa—0,2)=0. (5.84)
Similar results are valid if the jump occurs at x;,.

Jump Conditions for the Eigenfunctions

For the normalized equation (5.10) the jump conditions for the eigenfunctions
(5.40) of the operator (5.54) corresponding to (5.81 —84) then take the form
[5.12]

exp(— f‘zzo)>[w;,(+0)+f‘+°) Wa(+0)]

2D

o SO S0
—exp< — >[w,,( 0+ === y(~ O] (5.81a)
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J(+0) _ J(=0) _
exp< 5D > wn(+0) = exp< D > w.(—0), (5.82a)
2D ‘//rlt(xmax'_o) = _f’ (xmax'_o) Wn(xmax—o) s (583 a)
WnXmax—0)=0. (5.84a)

These jump conditions are valid for any potential with continuous values and
derivatives between the jumps. However, if the potential is linear between the
jumps, the transformed potential V5(x) is a constant and the solutions of the dif-
ferential equation are immediately obtained between the jumps. Each jump con-
dition then leads to one homogeneous equation, the whole set of those equations
having only nontrivial solutions if the determinant is zero. This condition is in
general a transcendental equation, which determines the eigenvalues and eigen-
functions. For simple potential wells the transcendental equation may be solved
analytically, as in the following example.

5.7 A Bistable Model Potential

As an example we treat the following bistable rectangular potential well (Fig. 5.3)
Sx)y=rfo, |x|=L/2
fx)y=0, L2<|x|=L (5.85)

fx)=0o, x>L.

It turns out that for this special bistable model all eigenvalues and eigenfunctions
can be obtained analytically. (If the width of the barrier in the middle is not half
the total width of the box a transcendental equation has to be solved.)

f(x)

1
N
N

Fig. 5.3. Bistable potential model
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With the help of the jump conditions (5.81a—83a) we easily obtain the
following eigenvalues and normalized eigenfunctions:

even eigenfunctions and their eigenvalues
Asw = (n*D/LH(2n)?; (n=0,1,2,...) (5.86)
vo  =IL(1+e NPy 1 2em 0ED), (5.87)

Wan = V/2ILA +e /D) =2 S/@D) o5 2 mx/L

n=1,2,3,..), (5.88)
Aany2 = (@*D/LH2n+1)?; (n=0,1,2,...), (5.89)
Wanis = VE[L a+ efO/D)] ~1/2¢/6)/2D) cos(n+ 1) nx/L, (5.90)

odd eigenfunctions and their eigenvalues

Ains1 = (*D/LH2n+v)?}; n=0,1,2,..., (5.91)
Wani1 = L~1? sin[Qr+v)xn/L]; O=x<L/2 (5.92)
|//4n+1=L‘1/2cos[(2n+v)(L—x)n/L]; L/2<x<L '
Aan_1 = (@*D/LH2n-v)?; n=1,2,3,..., (5.93)
Wan_1 =L *sin[@n—v)xn/L1; O=x<L/2 (594
|//4n_1=L‘1/2cos[(2n—v)(L~x)7z/L]; L/2<x<L. '
Here v is defined by
v=(2/m)arctan{exp[—fo/2D)]}; 0<v<1. (5.95)

Some of the lowest eigenvalues and their eigenfunctions are shown in Figs. 5.4, 5.
In particular, the lowest nonzero eigenvalue reads

Ay=(4D/L*[arctan {exp[ - fo/(2D)]}]?, (5.96)

which in the limit of large barrier heights is proportional to the Boltzmann
factor, i.e.,

Ay=@D/L* exp(~fy/D) for fo/D>1. (5.96a)
Some other bistable models and a soluble metastable and a periodic potential

model are given in [5.12]. The last model is also treated in Sect. 11.3.2. By
inverting the potential (5.85) one also gets a metastable model (Sect. 5.8).
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Fokker-Planck Equation for One Variable; Methods of Solution

Fig. 5.4. The eigenvalues
A, n=0,1,...,6o0f the
bistable rectangular po-
tential well as a function
of fo/D

Fig. 5.5. The first three
even (a) and odd (b)
eigenfunctions of the bi-
stable rectangular poten-
tial well for f, = 2D
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5.8 Eigenfunctions and Eigenvalues of Inverted Potentials

In addition to the normalized Fokker-Planck equation (5.10) we consider this
equation for the inverted (upside-down) potential

foy= -fx), (5.97)
but with the same x-independent diffusion constant D. As easily seen from
(5.57), the operators @ and a for the inverted potential are connected with the
operators a and d by the simple relations

a=-d; a=-a. (5.98)

Therefore the operator (5.48) for the inverted potential may be written as

L=—-da=—adad. (5.99)
We now apply the operator a to the eigenvalue equation L y, = — 4, y,, i.e.,
aLy,= —aday,=Lay,= —1,ay,. (5.100)

Thus if ay, is not identical to zero it is an eigenfunction of the operator
belonging to the inverted problem.

The connection between the nth eigenfunction y, of the original problem and
the mth eigenfunction y,, of the inverted problem depends on the boundary con-
ditions. Therefore we first discuss the transformation of the boundary condi-
tions. Using ¢,(x) = exp[—(1/2)f(x)/D]1y,(X), @m(x) = exp[—(1/2) f(x)/D]
“ Wn(x), (5.57) and ¥, ~a y, the probability current may be written in the form

_ o) 8 f(x)
S(x) = Dexp< D >ax[ <D >¢n(x)}
~Dexp<~&>exp< f(x)> 0 [ <f(x)> W, )]
2D 2D ) dx 2D
)
Dexp< 2D>awn(X)

~ exp< f(D)> Wm(x) = exp <%> Pm(X) .

Thus the boundary condition

- PCORNCE &)
S(xp) = Dexp< D >8x [exp< D >(pn(X)J

I

I

=0

X=Xy
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for ¢,(x) is transformed to the boundary condition
Flxo) \ -
exp <f(—D°)> Fmle0) = 0

for the eigenfunction @,,(x). Similarly the boundary condition

exp <f (;‘;’)> 0a00) = 0

for ¢,(x) is transformed to the boundary condition

S(ro) = — Dexp <— S (;‘)") > a—i {exp <fg_)> qsm(x)]

for the eigenfunctions @,, of the inverted potential, in agreement with Table 5.1.
(By inverting the potential a reflecting wall is transformed to an absorbing wall
and vice versa). As may be checked the jump conditions for y, and the jump
conditions for {,, are connected according to

=0

X=Xy

(5.81a) & (5.82a)
(5.82a) & (5.81a)
for y, for y,, .
(5.83a) & (5.84a)
(5.84a) © (5.83a)

(To see these connections i, = ﬁt]/m/m = —d&/m/m may be used; notice
that normalized real eigenfunctions are defined only up to a factor +1.)

We now express the eigenvalues and normalized eigenfunctions of the
operator L in terms of those of the operator L. To find the normalized functions

S(a wn)(@y,)dx = Sl//n(éa wp)dx =1,

may be used. According to the various boundary conditions in Table 5.1 we have

the following possibilities:

1) Boundary condition B1 (this includes natural boundary conditions) for the
original problem, i.e. B4 for the inverted problem (4= 0; ay, = 0)

In=Ans1>0;  Wp=aWei1/Vinsr, n=0,1,2,... . (5.1012)

2) Boundary conditions B2 (B3) for the original problem, i.e. B3 (B2) for the
inverted problem

Ay=24,>0; Wy=aw,/Vi,, n=0,1,2,... (5.101b)
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f(x) /£, wo-{f Fig. 5.6. Metastable potential model (solid line)
and its lowest eigenfunction (broken line) for
T H——— - fo=2D
L2 L2~ L
X

3) Boundary condition B4 for the original problem, i.e. B1 for the inverted
problem

=0, Ap1=4,>0, Wpi=ay,/VA,, n=0,1,2,.... (5.101c)
4) Periodic boundary conditions (A, = A, = 0)
An=4,>0, Wy,=ay,/\i,, n=1,2,.... (5.101d)

The eigenfunction ¥, in case 3 and 4 must be obtained from @y, =0. The
eigenvalues and eigenfunctions of the operator belonging to the parabolic poten-
tial and the inverted parabolic potential (Sects. 5.5.1, 2) are examples of
(5.1014a,¢).

Inverting the bistable potential model in Sect. 5.7 gives a metastable potential
model. The lowest eigenvalue of this metastable model is then given by 1o = A,
(5.96) and the corresponding even eigenfunction by (Fig. 5.6)

Wo=L "*cosvax/L, O0=sx<L/2
_ " (5.92a)
Wo=L “smv(L-x)n/L, L/2<x=L.

Here v is defined by (5.95).

5.9 Approximate and Numerical Methods for Determining
Eigenvalues and Eigenfunctions

Because the Fokker-Planck equation can be transformed to a Schrodinger equa-
tion, approximate and numerical methods used for solving the Schrodinger equa-
tion can also be used for solving the Fokker-Planck equation. We now want to
discuss some of these methods which turn out to be quite effective. The Fokker-
Planck equation is equivalent to a certain Langevin equation. The computer-
simulation method for Langevin equations was already discussed in Sect. 3.6,
therefore it will not be repeated here.
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5.9.1 Variational Method

Assuming natural boundary conditions (for other types, see [5.2]) the Sturm-
Liouville eigenvalue problem (5.41, 51, 52) is equivalent to the following varia-
tional problem. The function y which minimizes

2
f [<ﬁ‘ﬁ> DP(x) + y? Vs(x)] dx
ox

A= (5.102)
fyldx

leads to the eigenfunction y,. The minimum of this expression is then the lowest

eigenvalue 1,. The next eigenfunction and eigenvalue are found by minimizing

(5.102) subject to the auxiliary condition

fwowdx=0. (5.103)

Higher eigenfunctions and eigenvalues are found similarly by adding the
auxiliary condition that the function is orthogonal to all previous ones [5.2].
Approximate eigenvalues and eigenfunctions are obtained by the following
procedure. One guesses some of the lowest eigenfunctions which in addition
depend on certain parameters. One then minimizes (5.102) successively subject to
0,1,2,3,... auxiliary conditions. In this way, the parameters are determined,
leading to approximate eigenfunctions and eigenvalues. From the practical point
of view it is preferable to use such functions for the ansatz of the eigenfunctions
so that the integral can be evaluated analytically. As for all variational methods,
the results for the eigenvalues are much more accurate than those for the eigen-
functions and they are most effective for determining the lowest eigenvalues.

Lower and Upper Bounds

By the modified Ritz method of Weinstein [5.13] (see also [5.14]), one obtains
lower and upper bounds for the eigenvalues. Brand et al. [5.15] applied this
method to some Fokker-Planck equations.

5.9.2 Numerical Integration

Let us discuss the numerical integration method for the operator (5.54) of the
Schrodinger equation. The method can also be applied to the Fokker-Planck
operator (5.2) or to (5.51).

First assume that the potential (5.55) is symmetric, i.e. V{x) = V(—x). The
eigenfunctions y, and w, must then be either symmetric or antisymmetric. For
the symmetric (antisymmetric) eigenfunction we start integrating at x = 0 with
the initial condition y(0) = A; w'(0) =0 (w(0) = 0, y'(0) = A) up to the bound-
ary x = xg for some fixed value of A. (If natural boundary conditions are con-
sidered xg has to be chosen large enough consistent with the desired accuracy of
the cigenvalues.) We then calculate the difference to the given boundary values
and, by varying A, determine the eigenvalues A, as the zeros of this difference.
The eigenfunctions for A, are calculated in the above steps and can be normalized
by choosing A suitably.



5.9 Approximate and Numerical Methods 121

If the potential ¥ (x) is not symmetric but if x;,, X, Or both are finite and if
no singularities in the differential equation occur, we start at x = X, (Or at X;a4)
and integrate (5.41) up t0 X,y (Xmin) Using the boundary condition at x = xpi,
(Xmax). The eigenvalue A is determined so that at x = x,.x (*m;,) the boundary
condition is also fulfilled. If X, (Xyig) is infinite we have to use an appropriately
large x0) (x{3)). If there are singularities in the differential equation at some
point, one should try an analytical power expansion around this point and use
numerical integration in the other region.

If the potential V(x) is not symmetric and if x;, = — o and x,, = o, one
may start at x = 0 with the initial condition w(0) = A4, ' (0) = B and integrate
(5.41) in both directions to — oo and + oo. By a proper choice of B and A both
boundary conditions can be fulfilled. In order to find these values of Band 1 a
regula falsi method for the two variables may be used. The constant A4 finally
follows from the normalization (5.42). Numerical integration methods are
usually very accurate even for higher eigenfunctions. In limiting cases, e.g., very
high potentials or very small noise strength D, the numerical integration does not
work. In these cases, however, analytical methods may be suitable, Sect. 5.10.

5.9.3 Expansion into a Complete Set

To solve the Fokker-Planck equation (5.1, 2) one may expand the probability
density into a complete set p?(x) satisfying the boundary conditions, i.e.,

Wi, ) =F(x) ¥ c?(@) p?(x) . (5.104)
q

The choice of the arbitrary function F(x) will be discussed below. For natural
boundary conditions xg;, = —o and x,,, = o one may use for ¢9(x) for
instance Hermite functions ~H (ax) exp(— a?x?%/2), where @ is a suitable
scaling factor. Another possible choice for ¢?(x) is the following. We may con-
struct a system of polynomials orthogonal to a certain weight function {5.16]. As
weight function we may use the stationary solution of the Fokker-Planck equa-
tion. With the latter choice one has the advantage that ¢? are adapted to the
problem under consideration. If we use Hermite functions, only the scaling
factor a can be adapted to the problem. The insertion of (5.104) into the Fokker-
Planck equation leads to an infinite system of coupled differential equations for
the expansion coefficients ¢9. The truncated infinite system may then be solved.
Sometimes the structure of the system of coupled differential equations may be
such that only a finite number M of nearest-neighbor coefficients is coupled, i.e.,
of the form (9.17). Then one can cast the system into the form of the tridiagonal
vector recurrence relation (9.10 or 121) which may be solved by matrix
continued-fraction methods as discussed in Chap. 9. The matrix continued-frac-
tion method has the advantage that a large number of expansion terms in (5.104)
can be taken into account.

The M-nearest-neighbor coupling of the system seems at first glance to be
valid only for very special Fokker-Planck operators. This is, however, not the
case. If the drift and diffusion coefficients are rational functions of x, i.e.,
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Pi(x) _ af+aflx+. . +al)xm

DO(x) = _ |
Pyx) aP+aPx+... +aDx™ (
5.105)
2 Py(x) aP+aPx+.. +adx™
D¢ )(x) - _ ’

Pyx)  af+afx+.. . +af)x™ ’

and if there are natural boundary conditions, one can always find such a system
with M-nearest-neighbor coupling by using Hermite functions and setting F(x)
equal to the product P,(x) P,(x) of the denominators in (5.105). (In (5.105) it is
tacitly assumed that the denominators are different from zero.) Generally, the
function F(x) should be chosen so that M is as small as possible. In [5.17] this
method has been applied to the Fokker-Planck equation of a driven Josephson
junction, where the drift coefficient is proportional to a+x+ (b + cx?)"'and the
diffusion coefficient is a constant. An application to the laser Fokker-Planck
equation, where an expansion into Laguerre functions has been made, will be dis-
cussed in Sect. 12.4.

5.10 Diffusion Over a Barrier

We first apply the Fokker-Planck equation (5.10) to calculate escape rates over a
potential barrier, closely following the work of Kramers [1.17]. Then we want to
calculate the lowest nonzero eigenvalue for a bistable potential and the lowest
eigenvalue for a metastable potential. These types of problems have been exten-
sively treated in the literature [1.6, 7, 5.18 —30]. In this section we are mainly
interested in the case where the diffusion coefficient D is small, or more precisely
where the barrier height Afis much larger than the diffusion coefficient D. As it
turns out, one can get analytic expressions for the escape rate as well as for the
lowest nonzero eigenvalue in a bistable potential in this limiting case. For smaller
Af/D ratios, where no analytic expressions are generally available, one has to
apply numerical methods, which, as discussed in the last section, work for not
too large A f/D ratios.

For very low diffusion constants, the coefficient in front of the second deriva-
tive in (5.54) becomes very small. Therefore one may use singular perturbation
methods [5.31] which have been applied to a bistable potential by Larson and
Kostin [5.23] and Dekker {5.27]. In quantum mechanics, where the same
problem occurs when one goes over to the classical limit, one uses the WKB
method. This method was applied to a bistable potential by Caroli et al. [5.24].
More elaborate methods like the path integral method [5.28] and the Liouville
projection operator method [5.29] have also been applied. In this chapter we are
interested only in the quasi-stationary process. If one starts with a state where the
particles are at the top of the barrier, being unstable, it will decay. The transients
of such an unstable state will be discussed in Sect. 12.5 in connection with the
transients of a laser model.
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f(X) Fig. 5.7. Potential well for calculating the escape rate

5.10.1 Kramers’ Escape Rate

We now want to calculate the escape rate for particles sitting in a deep well near
X = Xmins Fig. 5.7. We assume that Af/D is very large. Furthermore, we restrict
ourselves to a constant diffusion D, which, according to Sect. 5.1, can always be
achieved by proper transformation. Then the probability current S over the top
of the potential barrier near x,y,, is very small and the time change of the prob-
ability density W(x, ¢} is also very small. For this quasi-stationary state the small
probability current S must then be approximately independent of x (4.46). In-
tegrating (5.15) with (5.56), i.e.,

—De™! WDai YPWix, 0] =S
X

between x;, and 4 we obtain

A
D[/ PW (xpyio, 1) — VP W (A4, 0)] = § | /W Pax;

xlTllIl

or if we assume that at x = A the probability density is nearly zero (particles may
for instance be taken away) we can express the probability current by the prob-
ability density at x = x,;,, i.€.,

A
S =De/Cmin Dy . 1)/ | /O Pdx . (5.106)

xlTllIl

If the barrier is high the distribution function near x,;, will be given approxi-
mately by the stationary distribution

W(x, t) = W(xpig, 1) e~ VO~ /Cmll/D (5.107)
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The probability p to find the particle near x,y;, reads

X X3
p = {W(x,0)dx = WXy, t) e/ Cmin)/D {0 Ddy (5.108)

x4 *1

Because for small D the probability density (5.107) becomes very small for x
values appreciably different from x,.;,, the xy, x, values need not be specified in
detail.

The probability p times the escape rate r is the probability current S. Thus by
using (5.106, 108) we get the following expression for the inverse of the escape
rate:

17?2 4
=2 = [e/®WPdx | /O Pdx. (5.109)

X1 Xmin

1
r

w|w

Whereas the main contribution to the first integral stems from the region around
Xmins the main contribution to the second integral stems from the region around
Xmax- We therefore expand f(x) for the first and second integrals according to

FOO = [Gmin) + 3" Kamin) (¢ — Ximin)?

5.110
Jx) zf(xmax)— ;'If”(xmax)l(x-xmax)z- ( )

Then we may extend the integration boundaries in both integrals to + oo and thus
obtain the well-known Kramers’ escape rate

rk = Q1) /L Cmin) | f (i) | € 7Y Cman) = Cnia)l /D .111)
As shown by Edholm and Leimar [5.25], one can improve (5.111) by calculating

the integrals in (5.109) more accurately. By using an expansion in (5.110) up to
the fourth term and by evaluating the integrals according to

§ emadrbrrodgy o <1 +bx*+cxt+ %b2x6>e“‘x2dx

— o — oo

n 3 ¢ 15 b?
a 4 aq 16 «a

we get the improved escape rate

av W)y .
,=,K{1_D<if o) _ 1S )
8 [f”(xmax)] 8 [f”(xmin)]

111 2 111 2
IR VL) S B (xmm>13>+ O(Dz)] 5.112)
24 If”(xmax) l 24 [f”(xmin)]
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For the inverted potential f(x) = —f(x) we obtain L exactly the same escape rates

from the well of fat %, = Xpnay Over the barrier of fat Xmax = Xmin-

5.10.2 Bistable and Metastable Potential

Let us now calculate the lowest nonvanishing eigenvalue for the symmetric
bistable potential shown in Fig. 5.8a for small diffusion coefficients D. By
inverting the potential we get the metastable potential in Fig. 5.8b. The lowest
eigenvalue ,10 of the metastable potential agrees with the lowest nonvanishing
eigenvalue 4, of the bistable potential, Sect. 5.8. If the Fokker-Planck equation is
interpreted as a Smoluchowski equation, the lowest eigenvalue of the metastable
potential is the decay rate of particles in the well. In the bistable potential the
lowest nonvanishing eigenvalue describes the transition rate between the left and
right well.

We first look for the symmetric eigenfunction ¥, and its lowest eigenvalue 1,
of the metastable potential. For reasons discussed below, we assume that at
x=+A the potential jumps to a negative infinite value (absorbing wall,
Sect. 5.4), so that we have the jump condition (5.84). For further considerations
it is useful to transform the eigenvalue equation (5.41) [see (5.35) with D® = D
and (5.56)]

Daixe_ﬂxwa_i P G0 = — Todo (5.113)

into an integral equation. Because of the symmetry of the potential and because
the eigenfunction is symmetric /" and @§ must be zero at x = 0 (i.e., the prob-
ability current is zero at x = 0), and by integrating (5.113) we obtain

N - x
D%cﬂ"“’@o = —Aoef(x)/D(f)(ﬁo(z)dz.

ol

Fig. 5.8. Bistable (a) and
(a) (b) metastable (b) potential
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Integrating this equation once more we arrive at the integral equation
_ _7 70D ~ Ao ¥ FowDta -
Fo(x) = e SP {eﬂ"“’ 90(0) — -1y VP 1dz (Po(z)} : (5.114)

This equation together with the boundary condition
@o(A4)=0 (5.115)

determines the eigenvalue 1, and the eigenfunction @.

For large barrier heights the eigenvalue 1,/D will be very small. We may thus
apply the following iteration procedure:
As zeroth approximation we use

Fx) = e TIPSO DG 0); I =0.

If we insert this zeroth approximation into the integral of (5.114) we obtain the
first approximation for the eigenfunction

_ _ 7(1) x _ y _
oV (x) = e TIPSO DG 0y (1 - A fdye/®Pldze /0P (5.116)
D o 0
Because of (5.115) the eigenvalue A, in first approximation is given by
- A - y _
iV =D/{dyeVPldze /@D, (5.117)
0 0

To obtain the eigenfunction and eigenvalue in second order we insert (5.116) in
the integral of (5.114) and again use (5.115). Higher approximations are obtained
similarly.

For small diffusion coefficients the double integral in (5.117) can be
evaluated analytically. For y = @ and z = 0 there is a very sharp maximum of the
integrand exp {[f(y) —f(2)]/D} for small D. The leading contribution to the
double integral stems from the region near this maximum. We therefore expand
f(r) and f(z) around this point (¥ = a, z = 0) up to second order, as in (5.110).
The integration over y can then be taken from — oo to + oo and the integration
over z from 0 to + oo. Notice that the double integral factorizes in this approxi-
mation, leading to the same integrals as in (5.109) (up to a factor £ for the first
integral). The eigenvalue finally reads

W= 2P O @) e VOO =21 (5.118)

Because we have two barriers in the potential of Fig. 5.8b, it is not surprising
that the decay rate A, is twice the Kramers’ escape rate over one barrier. We have
chosen a finite 4 in Fig. 5.8b because otherwise the double integral in (5.117)
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Fig. 5.9. Integration boundary of the double integral and
3 the values of its integrand for the potential in Fig. 5.6

B0 | 4

[l e

[N] [

would diverge. As done for the escape rate, (5.118) can be improved by taking
into account higher expansion terms of the potential near the maximum and
minimum, leading to results in complete agreement with (5.112). (However,
S""(0) is now zero because f(x) was assumed to be symmetric.)

For the inverted potential of (5.85) (Fig. 5.6) the value of the integrand of the
double integral is indicated in Fig. 5.9. The value of the double integral can im-
mediately be read off Fig. 5.9, leading to

- 4D 4D
Im_ ~ e NP, 5.119
8 LAeP+1)  L? G4

which agrees with (5.96) up to the order exp(—2f,/D). Neglecting terms of the
order exp(—3f,/D) we get in second approximation

o= 4ng <e—fo/D_ %6—2f0/0> , (5.120)

which again agrees with (5.96) but now up to the order exp(—3f,/D).

Bistable Potential

The same method used for the metastable potential in Fig. 5.8b can be used for
the bistable potential in Fig. 5.8a. Because at x = 4 the probability current must
now be zero (reflecting wall, Sect. 5.4), we obtain for the eigenfunction ¢, the
integral equation

91(x) = e /WP [ef‘f‘“’w(A) - %fdyef“’”’fdz ¢1(z)} : (5.121)
x y

The eigenfunction ¢, belonging to the lowest nonvanishing eigenvalue must be an
odd function for the bistable potential, i.e.,

91(0)=0. (5.122)
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The integral equation (5.121) together with (5.122) determine the eigenfunction
¢, and the eigenvalue A;. We may now apply the same iteration procedure as
before. In first order we have

A A
AP = D/< jdyef(y)/Djdze'f(z)/D> . (5.123)
0 ¥

1t can be shown by partial integration that this expression agrees with (5.117)

[notice f(x) = —f(x)].

Asymmetric Metastable Potential

To treat the asymmetric metastable potential in Fig. 5.10 we need only minor
modifications. Because the derivative @} (0) is no longer zero [f”(0) is still zero]
instead of the integral equation (5.114) we obtain

_ _ X . 7.x _ y _
Po(x) = e /WP [eﬂ"’”’«ﬁo(m +] e/"2dy G4(0) - 3" fdy S0P 1dz (ﬂo(z)} .
(5.124)
The eigenfunction @, must vanish at x=A4 and x = B
Po(A) = po(B) =0. (5.125)

To solve (5.124) we may apply the same iteration procedure as before. In zeroth
approximation then

¢6°) (x)=e” f) -fo1/D @0(0)
o'0=0; iP=0.

Inserting this zeroth solution in the double integral gives

_ _ x - 7)) x _ y _
@61)()() = e_f(x)/Def(O)/D(ﬁO(O) <1 + 5ef(Y)/Ddy o— Ag sdy efO’)/Djdze*f(Z)/D ,
0 0 0

(5.126)
where ¢ is given by

a= 0" e TOP/5,(0) . (5.127)

The two conditions (5.125) then determine ¢ and 1§". By expanding f(x) near the
maxima of the integrands up to second order [as in (5.110)] we obtain

I(()l) — (27.[)—1{ ‘f_'/r(o) |fvr(a) e—[f(a)—f(O)]/D + ‘f_‘r/(o)l‘f_‘r/(b) e*[/_‘(b)—f(O)]/D}
=TIgrtIxL>» (5.128)
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f( x) Fig. 5.10. Asymmetric metastable potential
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i.e., the sum of the Kramers’ escape rates (5.111) over the right and left bar-
riers.

Transformation to a Homogeneous Fredholm Integral Equation

The integral equation (5.114) may be transformed into homogeneous Fredholm
integral equation [5.32]. We show this for the metastable potential in Fig. 5.8b.
For the bistable potential the expressions are more complicated because the
stationary solution must be eliminated first by a projection formalism. Partial
integration of (5.114) leads to

Folx) = e @D {eﬁ"’”’@o(m 4 % [u(x) §¢00)dy - Eu(y) aso(y)dyB :

(5.114a)
where we have defined u(x) by
A —
u(x)= fexplf(y)/Dldy. (5.129)
X
Because of the boundary condition (5.115), i.e.,
= -f(4yD| f(O/D - Io 4 -
Po(A) =¢ e ?0(0) — o gu(y) Po(¥)dy (=0
we may write instead of (5.114a)
- Ao —7op| ¥ - 4 -
Polx) = > ¢ gu(X) P dy + fu() Go(»)dy | .
X
Using instead of the eigenfunction @y(x) the function
Po(x) = exp[f(x)/(2D)] o(x) (5.130)

we obtain the integral equation
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_ A :
Wo(x) = Ao(S)K(x,y) wo(r)dy (5.131)

with the symmetric kernel

K""y)=KW)=D‘1exp{—[f(x)+f‘cy>1/(2D)}'{Zg; o f:yc
(5.132)

Because we can express the second iterated kernel K, in terms of eigenvalues and
eigenfunctions of (5.131) [5.2, Chap. 111, (58)]

A —
K, (x,2) = (5) K@) K3,2)dy = T #n(x) w,(2)/ 4,
we obtain

A A A _
(S)Kz(x,x)dx= (5) (S)K(x,y)zdxdy: Y1/22. (5.133)
n

If we assume that 1, is much smaller than the other eigenvalues

O<tg< i <X<... (5.134)
we get
_ A4 A -1/2
Ao= { ) SK(x,y)zdxdy} . (5.135)
00

For small D, u(x) is approximately constant for x < a. Then the kernel K(x, y)
approximately factorizes and we finally obtain

— A A A
To=1/{K(x,x)dx = D/fe /™D < jeﬂy)/Ddy) dx. (5.136)
0 0 x

As may be seen by using partial integration this expression agrees with (5.117).

Mean First-Passage Time for the Metastable Potential

The mean first-passage time T;(x’) for a particle starting at x = x’ to leave the
domain |x| < A4 can either be obtained by [see (8.5, 9, 10)]

') = :?Api(x,x’)dx’ , (5.137)

Legp(x)pi(x,x') = —o(x—x"), (5.138)
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Pi(xA,x")=0 (5.139)
or by, see (8.15a),

Lip(x)Ti(x") = -1, (5.140)

Ti(£A)=0. (5.141)

For the metastable potential in Fig. 5.8b we now calculate 7; for x’ = 0. Because
the potential is symmetric and D is independent of x, p;(x,0) and also Ti(x")
must be symmetric in x and x’, respectively. Therefore, the first derivative of
P1(x,0) at x = 0 and of 7;(x') at x’ = 0 must vanish. Using

LFP(X)zDie—f(x)/Dief_(x)/D
a

* dx (5.142)
Lip(x') = Def>'VD 9 e~ /&')/D 9
ax’ dx’
it is easy to solve (5.137 —139):
_ A _ y
Pi(x,0) = D~ e~ /D[ fOVD [ sa(z)dz] dy. (5.143)
X 0

The ¢ function in (5.138, 143) may be replaced by a sharp symmetric function of
finite width. Then the integral over the J function for y >0 is 1/2, giving

A A
T = § pitc0)dx =2 {p(x,0)dx
A
=D~ fe /P [ § ef(”)/Ddy:l dx. (5.144)
0

The solution of (5.140) with the boundary condition (5.141) and with
dTy/dx'|, -o=0reads (|x'| = A4)

A y ~
T,(x") =D‘1jef0’)/D<§e'f(")/Ddx> dy, (5.145)
x! 0
i.e., forx'=0
A _ y _
T(0)=D'[e/OP( fe/WPdx)dy
0 0

— 17, (5.146)
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Thus, this expression is equal to the inverse of the first approximation of the
eigenvalue, compare (5.117). It is, however, also equal to (5.136, 144) as may be
seen by using partial integration.

Thus, for the mean first-passage time an exact expression valid for every
potential height and arbitrary diffusion coefficients can be derived. For large
potential heights the double integral can be evaluated analytically as done before.
The inverse of the mean first-passage time is then given by the sum of the
Kramer’s escape rates (5.111) over the left and right barriers.



6. Fokker-Planck Equation for Several Variables;
Methods of Solution

In this chapter we discuss methods of solution for the Fokker-Planck equation
(4.944a, 95) for time-independent drift and diffusion coefficients, i.e., for

dW/dt =LgpW = —8S,/8x;, (6.1)

2

Lgp=~ —a—Di({x}) +
ax. . ,

i U J

Dy . (6.2)

(With the exception of Sect. 6.6.5 the summation convention for Latin indices is
used in this chapter.)
In (6.1) S; is the probability current

In the stationary state and for one variable this probability current must be
constant (and for natural boundary conditions it is zero). Therefore we could
obtain the stationary solution in terms of an integral in Sect. 5.2. For N variables
the probability current (6.3) is generally not constant in the stationary state and
for natural boundary conditions it is generally not zero. Therefore, we can no
longer proceed in the same way as for the one-variable Fokker-Planck equation.
Only for certain conditions for the coefficients (potential conditions [6.1 — 4])
may the probability current be zero in the stationary state, and the procedure will
then resemble the one-variable case, discussed in detail in Sect. 6.4 for a general
diffusion matrix. In these introductory remarks we assume that the diffusion
matrix is independent of {x} and proportional to the unit matrix (Djj= Ddy).
Then the probability current takes the simple form

Si= W(D,—Daln W/ax,) . (63a)

Obviously, the probability current can vanish only if D; is the gradient of a
potential @, i.e.,

D;= —D3®/dx;. (6.4)

Necessary and sufficient conditions for the existence of @ are the potential condi-
tions
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9D;/dx;=9dD;/0x;. 6.5)
The stationary solution of (6.1, 2) then reads
Wy=Ne %, (6.6)

where @ is given by the line integral

X}
&({x) = —D'lk D;({x')dx/ . 6.7)

The condition where the probability current vanishes is called the condition of
detailed balance. (More precisely, if the irreversible part of it vanishes, Sect. 6.4.)
If (6.5) is not fulfilled, the probability current cannot vanish everywhere and cal-
culation of the stationary distribution is generally much more complicated.

If the potential conditions hold and if D; = Dd;; (D independent of {x}), we
may write the Fokker-Planck operator (6.2) in a form similar to the one-variable
case (5.35), i.e.,

d d
Lip=D—e¢ % —¢?. (6.8)
i ax,- axi

From (6.8) we obtain the operator relation

Lﬁpe“b:De“b-—a—e‘“bie“b:e“bLFp. 6.9)
ax,- ax,-

Thus the operator
L:e¢/2LFPe_¢/2=e_¢/2LEPe¢/2=L+ (6.10)

is an Hermitian operator. The problem of calculating the eigenvalues of Lgp,
which are useful for obtaining nonstationary solutions, can therefore be reduced
to an Hermitian eigenvalue problem if the potential condition (6.5) holds. The
eigenvalues must then be real. Generally the Fokker-Planck operator cannot be
brought to an Hermitian form and its eigenvalues and eigenfunctions may be
complex.

6.1 Approach of the Solutions to a Limit Solution

To investigate the behavior of the solutions for large times we first compare two
solutions of the Fokker-Planck equation. For certain conditions we show that
every two solutions of the Fokker-Planck equation must agree for large times.
(If the drift and diffusion coefficients do not depend on time this limit solution is
the stationary solution of the Fokker-Planck equation.) This agreement will be
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proved by constructing a functional H(¢) of two functions which can decrease in
time only if the two functions are different. Because this functional cannot reach
negative values, one concludes that in the limit of large times these two functions
must coincide.

Following Lebowitz and Bergmann [6.5], and Graham [4.8], we define the
functional H(¢) by

H(t) = {WIn(W,/ Wy)dVx
= [(WyIn W, — W;In W;)dVx. (6.11)
The first term in the last line is Boltzmann’s functional, for which he showed that
it decreases in time if the solution W, of the Boltzmann equation did not agree
with the stationary solution (H theorem) [1.21]. In a general analysis of thermo-
dynamic nonequilibrium states, Schlégl [6.6] used a functional of the type (6.11)
and he has shown that it serves as a Ljapunov function [6.7]. The information
gain in probability theory [1.14, 6.8] is also of this form.
In our case, W and W, are two positive solutions of the Fokker-Planck equa-

tion. We assume that there are natural boundary conditions and that both solu-
tions are normalized to one, i.e.,

WidNx = {wpdVx=1. (6.12)
(We also assume that the integral (6.11) does exist; for instance, we exclude
therefore ¢ functions for W, W,.) Furthermore, we assume that the drift coef-
ficients have no singularities and that they do not allow the solutions to run away
to infinity. We first show that H(#) cannot have negative values. By introducing
the ratio

R=W,/W,, (6.13)
using (R = 0)

R
RInR-R+1= flnxdx=0, (6.14)
1

and using the normalization for W, and W,, we immediately obtain

H(t)= {W;InRd"x = [(W,InR — W+ W,)d™x
= {W(RInR~R+1)dx=0. (6.15)

Next we derive an expression for A (®):

H(t) = [[ Wy ln(W,/ Wa) + (Wi/ W) W, — (W, / Wy) Wa] dNx
= {(MInR—RW;)d"x =
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= I rp W) InR - R W3] d"x

= [(WiL #pInR — R W) d™x (6.16)
[the integral § W,dNx = (d/ dt) § W;d"x vanishes]. Because

a a
pplnR = D;+D;—— ) —InR
” < " ax > ax;

_(pyip, 2 ) L 2R
axj' R axi

1 O8R OR
L{pR-Dj— —2 2% (6.17
FP v R2 an ax,- )

1
R
we may write

1 8R aR

H(t)=§<mL R RW2>d - WDy = - ax

JRL pp Wy~ RW3)d"x — fW1Dy— — — —d"x

dlnR 9dInR

dMx<0. (6.18)
ax,' an

— §MDy

If D;; is positive definite, H (¢) must always decrease for 3InR/dx; + 0. Because
H(¢t) is bounded from below, H(¢) cannot decrease indefinitely. Thus we
conclude that finally both InR and R must be independent of {x}. Because of the
normalization, R must then be equal to 1 and H(¢) reaches its minimal value
H = 0. Thus the two solutions W, and W, must coincide for large times. The same
must, of course, be true if we take a third solution W3, and so on. Therefore all
solutions of the Fokker-Planck equation finally agree if we wait long enough.
This result is valid regardless whether the drift and diffusion coefficients depend
on time or not. If the drift and diffusion coefficients do not depend on time, a
stationary solution W, i.e.,

LepWy=0, (6.19)

may exist. It then follows from H = 0 that this solution is unique and that all
other functions after some time T agree with it. It should be noted that this result
is valid if D;; is positive definite everywhere and if the drift coefficient has no
smgularltles, though the time T may be very large, especially if high potential
barriers occur (Sect. 5.10). It should further be noted that W,({x}, ¢) is positive
for every finite {x} after a small time has elapsed. [Initially W ({x}, f) may be zero
in some regions, but because of (4.78, 109) it is positive everywhere after a small
time 1.]
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If, however, the drift coefficient has singularities (i.e., infinite high potential
barriers), the problem may decompose into two or more separate problems, and
the results are no longer valid. Furthermore, the results are no longer valid if the
drift coefficients lead to run-away solutions of the deterministic equation (1.17).
An example is the inverted harmonic potential in Sect. 5.5.2. If one solution
starts with a sharp value at the left side of the potential and the other with a sharp
value at the right side of the potential, both solutions will be driven apart.
However, if we do not have any drift coefficient at all and if the diffusion coef-
ficient is constant (Wiener process) the result is still valid. [Compare two solu-
tions (5.20) with different x’ and ¢’ for large time ¢.]

Application to Kramers Equation

The results cannot be applied to the Kramers equation (4.112) because the
diffusion matrix (3.131) is not positive definite. Here we can conclude from
(6.18) only that the derivative with respect to v vanishes for large times

8InR/3v=0. (6.20)
If a stationary solution exists, it is given by the Boltzmann distribution
exp{—m[f(x)+v*/2)/(kT)}, as may be seen by insertion. We conclude from
(6.20) that for large times any distribution must have the form

Wi(x,v,t) = h(x,t) exp[—mv¥/QkT)] . 6.21)
By inserting (6.21) into the Kramers equation (4.112) we obtain

,;=<_1_1f'<_x>>vh,
Ox kT

Because # does not depend on the velocity v, then
h=0;  h(x)=hoexp[—mf(x)/(kT)], (6.22)

i.e., the stationary solution is also unique for the Kramers equation.

6.2 Expansion into a Biorthogonal Set

To solve the time-dependent Fokker-Planck equation (6.1, 2), one may use the
separation ansatz

W(x, 1) = g (xhe (6.23)

which leads to the eigenvalue equation
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LFP¢/1= —A,u¢u. (6.24)

Because we use the summation convention for Latin indices we now indicate
different eigenfunctions by Greek letters (no summation convention for Greek
indices).

Because L gp cannot be generally brought to an Hermitian form, we also need
eigenfunctions (p;r of the adjoint operator [5.4]

Lol = — A0, . (6.25)

If the eigenvalues are complex, the complex conjugate of an eigenvalue is also an
eigenvalue because Lp is a real operator. For the definition of (p;r we may use
either the complex conjugate eigenvalue in (6.25) or the eigenvalue itself. The last
choice requires that the scalar product must then be defined by

(07,0, = o) (xho,(xhax. (6.26)

It is easy to show that the eigenvalues in (6.24, 25) are the same. Denoting for the
moment the eigenvalue in (6.25) by A;‘ we have

A0, 0) = (08 Lepo,) = Lipp,,0) = =4, (0,,0,)

i.e., 4,= /l;r . Furthermore, it is easily seen that eigenfunctions (p;r , ¢, for
different eigenvalues are orthogonal

—Av(¢;’ ¢v) = (¢;’LFP¢V) = (LFJ'rP¢/j9 ¢v) = —Au(¢;’ ¢v) .

We may thus normalize the functions according to

@), 0,) =04 (6.27)

Whereas for Hermitian operators a complete set always exists [5.4], it may not
exist for non-Hermitian operators. If we were to use a suitable set we could trans-
form the problem of diagonalizing the operator to the problem of diagonalizing
non-Hermitian matrices. If the eigenvalues are all different, a non-Hermitian
matrix can always be reduced to a diagonal form by a similarity transformation,
otherwise it can be reduced to a Jordan canonical form only [6.9] [see also the
remark following (6.120)].

In the following we assume that such a biorthogonal set does exist and that
the completeness relation

o —{x') = % ou(xXD o (D (6.28)

is fulfilled.
If a stationary solution of the Fokker-Planck equation exists we obviously
have

Ao=0;5  poph=WullxD; o7 (xh=1. (6.29)
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The transition probability density is obtained by inserting in the formal solution
of (6.1, 2) expression (6.28), i.e.,

P(ix}, t]fx'}, 1) = e"re@D=Dg (g —(x'}) = % el (Dot (')

= §¢u({X}) on (x' e M= (6.30)

6.3 Transformation of the Fokker-Planck Operator,
Eigenfunction Expansions

We now assume that we have natural boundary conditions for all N variables.
Other boundary conditions may, of course, also occur and some of the proce-
dures and results of this chapter may also be applied to these boundary condi-
tions. Generally, the boundary conditions must be given on an (N—1)-dimen-
sional surface of the N-dimensional variable space. The variety of boundary con-
ditions is much larger than in the one-variable case (see Table 5.1 for a summary
of common boundary conditions). For instance, on some parts of the surface the
probability density may vanish, whereas on other parts of the probability current
may vanish. For Brownian motion in periodic potentials (Chap. 11) there are
natural boundary conditions for velocity and a periodic boundary condition for
position.

In addition to having natural boundary conditions we assume that a station-
ary solution W ({x}) of (6.1, 2) exists. Because the probability density must be
positive, we may write

Wl = Npe™ ®®D5 - Nt = fe=2dMx. (6.31)

The function &({x}) is called a generalized potential. (If we use a proper normali-
zation of this generalized potential the normalization constant N is unity.)

In this section we also assume that we already know the stationary solution,
i.e., the generalized potential @({x}) = —In W+ InN;. To find W ({x})) for the
general case we must solve the Fokker-Planck equation (6.1, 2) for the stationary
state. As shown in Sect. 6.4, one can obtain &({x}) by quadratures if certain con-
ditions, called potential conditions, are met by the drift and diffusion coef-
ficients.

We now want to put the Fokker-Planck operator in a form similar to (5.35)
for the one-variable case. Because now the probability current does not need to
vanish in the stationary state even for natural boundary conditions we try the
more general ansatz (this form was already used in [6.2])

Lp= _a_Dije—‘l’_a_e‘i’_ ipl(a)

ax,- ox ' ax,-

2
=a—Di,—i e? iDi,e—“’ +D®]. (6.32)
6x,-6xj 6x,- an
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(The operator in the bracket does not act on a function outside this bracket.)
Because the operator (6.32) should agree with (6.2), the auxiliary drift coefficient
D® in (6.32) is given by

D®=D—e? iDUe—“’> =D,;- Dy Di,-a—di. (6.33)
Ox; Ox; Ox;

Since (6.31) is the stationary solution of (6.1, 2) then

i(pl(a)e— ?) = 0 D;e ?— iDije' 4
6x,- 6x,- an

= —Lgpe ?=0. (6.34)
The probability current in the stationary state, i.e.,

a a,
(Sq)i= <D,-— TDU> W, = D®wy,

Xj

vanishes only if D{® is zero. (Because of (6.34) the divergence of the stationary
current is always zero.)

As was done in the one-variable case (5.39), the first operator on the right-
hand side in the first line of (6.32) can be brought to an Hermitian form for suit-
able boundary conditions by multiplying it from the left by exp(®/2) and from
the right by exp(— $/2). By applying this transformation to (6.32) we obtain

L=e®Lpe ®2=Ly+L, (6.35)
with
Ly= e“’/ZiDije“‘z’ie‘pﬂ:Lﬁ (6.36)
6x,- an
and
L,= —e“’/zip,ia)e—“’“: -Lj}. (6.37)
6x,~

Because of (6.34) it is easy to see that the last operator is an anti-Hermitian
operator

5 + 5 +
L/J{ = _ e<15/2 Dl(a)e—d’etb/Z - _ eWZD,(a)e_‘p e<15/2
6x,- 6x,-

0 -
—e?2 0 p@e-o2_
6x,~
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Any operator L can, of course, be decomposed into an Hermitian part Ly =
(L+L*)/2 and an anti-Hermitian part L, = (L —L *)/2. The decomposition
(6.35), however, has the particularity that the operator L , applied to the square
root of the stationary distribution always leads to zero because of (6.34)

LAY/ Wy=1NyLse *= —|/Nye®? <aip§a>e— ‘1’> =0. (6.38)
i1
[Obviously, the same holds for the operator Ly as immediately seen from (6.36).]
The Fokker-Planck equation with the special drift coefficient

oDy _,, 80

DO = il
! an v an

6.39)

also has the stationary solution (6.31). In this special case, the anti-Hermitian
part L , vanishes. If an inverse of Dj; exists, then

od 1 0D

—=A;,=D Y =X -DP). (6.40)

0 i ! lj< 6xk /

This equation requires that D® and D;; must satisfy the potential conditions
3A,/6xj= 6Aj/3x,. (6.41)

Up to now, we have assumed that we know the stationary solution. Usually, the
inverse problem arises, i.e., one is looking for the stationary solution for given
drift and diffusion coefficients. If the drift and diffusion coefficients happen to
obey the potential conditions (6.41) with D; = D}S), the generalized potential @ is
according to (6.40) obtained from the line integral

B
D({xp = {i}Ai({X’}) dx/ (6.42)
X0

and the distribution function then follows from (6.31). If the drift and diffusion
coefficients do not obey (6.41), one may try to split the drift coefficient
according to (6.33) into a drift coefficient D{® obeying (6.41) and a drift coef-
ficient D@, i.e.,

D;=D®+D®. (6.43)

Here, D,(a) has to obey (6.34) with & given by (6.42). If a stationary solution
exists, such a decomposition must always be possible. Without knowing the sta-
tionary distribution, however, this decomposition of the drift coefficient is gen-
erally hard to find. (In special cases, one may find the decomposition by some
guesswork.) As shown in the next section, we always know this decomposition, if
detailed balance is valid. Consequently, we can then obtain the stationary solu-
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tion by evaluating only the line integral, which is, of course, much easier than
solving a partial differential equation of second order.

The Hermitian part L may be cast in forms corresponding to the one-varia-
ble expressions (5.48 —52). To do this we need the square root (D' %) = (D% ji
of the diffusion coefficient D, which we assume to be positive definite. This
square root (Dl/z)i,-, defined by (Dl/z),-k(Dl/z)kj = Dj;, can also be assumed to be
positive definite. (We can diagonalize the symmetric matrix D;; by an orthogonal
transformation, then take the positive square root of the positive eigenvalues and
finally apply the inverse of the above orthogonal transformation.)

Thus we may write

LH= —afa,-, (644)

where a; and a;" are defined by

12y o—#2 0 _on
a; =(D")ye —e

Xj (6.45)
at = _eqs/zi(Dl/z)ije—wz.
6xj-

The operator L has formally the same form as the Hamilton operator for a
particle with a mass tensor (D~ 1),'j-}*12/2 in quantum mechanics, i.e.,

Ly=—D;—— -V, (6.46)
0x;

where the potential V5 is given by (8/0x; does not act outside the brackets)

0 0
Val(xY) = e¢/2 __Di.__e—¢/2
S({ }) [axi ij an

AL U
6x,~ an

"4 Tox ox; 2

_ Lo, (8P« _pp\(BDu_pe), 1 8DF 1 &°D,
4 v 0x, 0x; / 2 Ox; 2 9x,0x;

(6.47)

L, 00 a¢_1{aD_a¢}

The separation ‘ansatz’ (6.23) for the time-dependent solutions now leads to
the problem of finding eigenfunctions of L and L *

Lvlu =(LH+LA)V//1= _/1/1!///1
LYy =W@u—Law; = -2 -

(6.48)
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Because of the transformation (6.35) these eigenfunctions are connected to Pu
and ¢, (Sect. 6.2) by

ou=e Py, gf =yl (6.49)
The completeness relation, the transition probability and the joint probability

distribution W, = P W, in the stationary state, expressed in terms of w, and y,}
read for ¢ = ¢/ (wy = wg)

LDy (' =o(g— &), (6.50)
u
P({xtlix'}, ') = Two(i)/ wo(fx '] % v (D (P e =, (6.51)

Walxd, 8 {x ' 1) = wo (%) wo(fx '} % vu(bh i (et (6.52)

The result for ¢ < ¢’ follows immediately by using the property of a joint dis-
tribution

Wallxh, i}, t) = Wa(ix '}, 15 i, 1), e, (6.53)
Wao{x}, 55 {x '} 1) = wo({x) wo((x') ; v () w,(x e Mli=r1, (6.54)

Positivity of the Real Part of the Eigenvalues

We first consider the real eigenvalues /1};[ and the real eigenfunctions y/;[ of the
Hermitian operator L , i.e.,

Lyy,'= -7yl (6.55)
The eigenfunctions are assumed to be orthonormalized, i.e.,

fwiwidx=4,,. (6.56)
(The eigenfunctions are orthogonal for different eigenvalues. Degenerate eigen-
functions may be chosen in such a way that they are mutually orthogonal [5.4].)

Because of (6.44) we may write

A =Jwiat ajwlidVx = [(@yth) (g, pthdMx = 0. (6.57)

The equals sign requires that q; y/}f = 0. Since (D) 4 Was assumed to be positive
definite, y/;[ must be the square root of the stationary solution

W' = 1/Nye™ 7%=/ W,. (6.58)
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All eigenvalues not belonging to the stationary solution a; wil =0 must be
positive. They can be arranged in increasing order

O=dg<M=M=M=.... (6.59)

We now consider the generally complex eigenfunctions v, and the generally
complex eigenvalues 1, of the non-Hermitian operator L (6.48). As a con-
sequence of (6.38) the eigenfunction y, of L with stationary eigenvalue A= 0 is
given by

wo= i =1/Nee™ 7. (6.60)

To prove that the lower bound of the real parts of the other eigenvalues is given
by A we expand the generally complex eigenfunctions w, into eigenfunctions
of LH

vu= Tewys Wzl (6.61)

The stationary solution 4! must be omitted in expansion (6.61) because the func-
tion y, should be orthogonal to wi = wo = wb. (If the eigenvalue of w, is dif-
ferent from zero the eigenfunction y, must be orthogonal to w,.) If we insert
expansion (6.61) in the expression [this is not the scalar product defined in (6.26)]

u .
fwiw,dx

we obtain (u = 1)

- 2,H
E |c/1v| ;Lv

Re{l,} =~ > 2H>0. (6.63)

oo
T lewl?
v=1

In deriving (6.63) we used (6.56, 59) and
I= E c;fvcuv’ j V/\]/{L A V/]\:[' de

=~ Lepeu [T awHyidx = —1%, (6.64)

i.e., Re{I} = 0.

Hence all solutions finally decay to the stationary solution, in agreement with
the results of Sect. 6.1.

The results of this section were derived in [6.10] for the case where the coef-
ficients satisfy the detailed balance condition (6.95 — 97). It was shown in [6.11]
that these results are also valid if these conditions are not satisfied a priori.
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Reduction to an Hermitian Problem by Analytic Continuation

The operator
L=L(n)=Ly—inL, (6.65)
with real 7 is a self-adjoint operator with respect to the complex scalar product:
fo*Lyd™x = {(L* p)* yd™x. (6.66)

We may thus look for real eigenvalues 1 «(n) and generally complex eigenfunc-
tions §,(n) of L, i.e.,

Ly=-1,9,. (6.67)

Having found analytic solutions of (6.67) we may then replace the parameter #
by *i and in this way obtam eigenfunctions of L and L* with the eigenvalue

A= 0 =1 ,(~ I,
vu= 0,05t == DI*. (6.68)

[In the last expression we must take the complex conjugate because our scalar
product was defined by (6.26).] The complex conjugates of (6.68) are also eigen-
solutions of L and L *, their eigenvalue is then A};. For an example of this method
see [6.11]. It should, however be mentioned that this method seems to work only
if analytic expressions for ’Tu and {§, exist. In that case one may, of course,
equally well directly solve the eigenvalue equation (6.48).

6.4 Detailed Balance

Detailed Balance for a Master Equation

Because it is easier to explain the principle of detailed balance [1.13, 14, 6.1 —4,
6.10—13] for the master equation, we begin with the latter. A master equation is
an equation of motion for the probability W, of a state n. If w(n—m) are the
transition rates from state » to state m, the master equation has the form [see also
(1.34)]

W= T [w(m—n) W,—w(n—m) W, . (6.69)
m
For a stationary or steady state solution the total number of transitions per time

into state 7 must balance the total number of transitions per time out of state n,
i.e., we have the

balance for steady state:

Ywim-n)W, =Y win-m)W,. 6.70)
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3 3
w(1—>3) w(3—2) w(1—>3) w(2—>3) w(3—=>2)
2 2
w(3—>1)
w(2—>1 w(2—>1)
w(1—>2)
(a) 1 (b) 1

Fig. 6.1. Detailed balance is violated in (a). The probability current is given by S=w(1-3) W] =
w(@-2) W = wQo) Wy If w(iag) = wli-) W/ W; detailed balance is fulfilled in (b)

One has detailed balance if each individual transition is balanced, i.e., if the
number of transitions per time from state m into state n balances the number of
transitions per time from state # to state m, i.e.,

detailed balance:
wim-n)W,,=wh-m)W,. 6.71)

In this case, stationary distribution is often called an equilibrium distribution.

If we have only two possible states, the steady-state condition (6.70) and the
detailed balance condition (6.71) are the same. For three states the conditions
may already be different (Fig. 6.1).

Detailed Balance of the Fokker-Planck Equation for Even Variables

First we consider only variables which do not change their sign if time reversal is
considered. To find a connection with the detailed balance condition of the
master equation we write the Fokker-Planck equation in the form of the con-
tinuous master equation

a_Wia{ftc_}’L) = fIw(x'}= ) W(ix'}, 1) —w(ix}> ') Wi}, 01dVx' . (6.72)

Here the transition rate is given by [cf. (1.36) for the one-variable case]

W'} ) = dim{x}, 7[x'},0)
T 7=0

= Lep () (00}~ {x')) - 6.73)

We then have the following balance condition for the steady state [continuous
analog to (6.70)]

wlx} > x) W (xhd e = fw(x}— ') W) dVx’
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or by inserting (6.73)

Lep(fx) § Walfx ') o0} — x P dx’
= §Lpp (X)) O}~ x D d™x’ Wy((x)) .

Because the integration on the right-hand side leads to zero we obtain

balance for steady state:
Lep(ix)) Wy(ix) = 0. (6.74)

Thus the probability density must satisfy the stationary Fokker-Planck equation.
The detailed balance condition (6.71) for the continuous case reads

w(lx'} =) W'D = w(ix}—»{x'D) W (), (6.75)
or by inserting (6.73)
Lpp((X}) (P} — {x'D W (ix'}) = Lep((x'}) 6(fx} — {x') W ({x)) . (6.76)

Because of the ¢ function we can replace the argument {x'} in the stationary dis-
tribution function on the left-hand side by {x}. If we write the distribution func-
tion on the right-hand side of (6.76) in front of the operator and if we then use
(4.93) we obtain

L (tx) Wanlfe]) 0 (i} = {x'}) = W () L fp((x) 8({x} — 7)) .

This equation can be valid only if the operators in front of the ¢ function agree,
i.e., we obtain the condition for

detailed balance:

Lp (X)) Wa({x)) = Wy (XD Lip ({x}) . (6.77)

This condition is an operator equation, i.e., it must be valid if it is applied to an
arbitrary function. The steady-state condition (6.74) is not an operator equation,
Le., it cannot be applied to an arbitrary function. If we apply (6.77) to the
function f({x) =1 we recover (6.74) because Lp({x}) - 1 = 0. (Obviously, the
detailed balance condition must contain the balance for the steady state.)

Detailed Balance for the Fokker-Planck Equation for Even and Odd Variables

The variables are classified according to their transformation with respect to time
reversal {x}—{X}. The even variables like position do not change their sign
whereas the odd variables like velocity do change their sign

(6.78)

X =x; - g=1 even variables
X = & X;

&= —1 oddvariables
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or {¥} = {ex}. With respect to the summation convention we always disregard ¢;.
If we have even and odd variables condition (6.75) for detailed balance must now
be replaced by [1.13, 6.13]

w({x' =) We((x') = w({ex}—lex'}) Wy(lex)) (6.79)
and
Wa({x}) = Wy(lex)) - (6.80)

The left-hand side of (6.79) describes the number of transitions out of the state
{x'} into a state {x}. The right-hand side describes the number of transitions for
the reverse process with reverse motion, i.e., odd variables (e.g., velocity) have to
be replaced by their negative values. Equation (6.80) describes the fact that the
stationary distribution must be invariant if time reversal is applied. If the transi-
tion probabilities depend on some external parameters (like the magnetic field)
which also change their sign under time reversal, these transformed parameters
have to be used on the right-hand side of (6.79, 80). If we insert in (6.79) the
Fokker-Planck transition rate (6.73), by the same steps used to obtain (6.77) we
then obtain the operator equation [6.10]

Lyp({x}) Wy({x)) = W(lexp) Lip(fex)) . (6.81)

Detailed Balance Condition for Joint Distribution

Conditions (6.80, 81) lead to the usual conditions for detailed balance defined for
the joint distributions [6.12]. If we apply (6.80, 81) once more we get
(L rp (DI Way () = L (x) Wi (ex) Lip((ex})
= Lyp({x}) Wy ({x}) Lip({ex})
WallexDILfp({ex))]’

or generally
[Lrp((XD]" W (x)) = W({ex)) [Lip({ex)]” . (6.82)

By expanding the exponential function into a power series we thus obtain the
operator relation

eLrpXp—1) u/st({x}) = u/st({gx}) eLErp({Ex})(t-t’) . (6.83)

We now multiply (6.83) by the J function §({x}—{x'}) = d({ex}— {ex'}) from the
right-hand side. On the left-hand side we then replace the argument of the dis-
tribution function by {x'} whereas on the right-hand side we use (4.93) and thus
obtain

e LrpDE=1 500 — (X7 Wyy((x'}) = eLre @& D= §(lext — lex'}) Wy(lex)) . (6.84)
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Because a formal solution of the transition probability has the form
Pl t]{x, t') = eLre @D 56— (x1))
and because the stationary joint distribution is given by
Wi, 6 {x7} 1) = P [, 1) W (')
we may write (6.84) in the form [6.12]
Wa(h, 1 (x ' 1) = Wa((ex’), 1 {exh 1') . (6.85)

If the joint probability distribution depends on external parameters which also
change their sign under time reversal, then transformed parameters must be used
on the right-hand side of (6.85).

Equation (6.85) may be interpreted in the following way. If we plot in some
way the time dependence of W, on a movie we get the same time dependence on
the reverse-running movie (velocities change their sign). If the movie is reversed
at time ¢ = {5 we have

Wa({ex}, to—t, {ex'}, to— 1) = Wa{ex}, t'; {ex'}, 1)

Wy({ex'}, t{ext, ')
= Wb 3 )0 (6.86)

In the first line we used the stationarity of the process (add ¢+ ¢’ — ¢, to the times
on the left side) and in the second line the symmetry of a joint distribution. Con-
ditions (6.79, 80) are recovered from (6.85) or its equivalent form (6.84). Dif-
ferentiating (6.84) with respect to time we get for ¢ =¢' the operator equation
(6.81), which is equivalent to (6.79). Equation (6.80) follows from (6.84) by
putting t =¢'".

Consequence of the Operator Equation

To discuss the consequences of the operator equation (6.81) we first introduce
the irreversible and reversible drift coefficients defined by

D'(x) = L[Di(x) +&:D({exPl, (6.872)
Di({x) = $ID(x}) - e:Di({ex)] , (6.87D)
Di({x}) =D{"(x)+D({x)). (6.87¢)

Obviously the components of the irreversible and reversible parts are trans-
formed according to

D ({x}) = &Df ({ex}), (6.882)
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Di™(x) = — D ({ex}), (6.88b)

e., the components of the reversible (irreversible) part are transformed in the
same (opposite) way as the time derivative of x;. The deterministic equation
x;= D;®"({x}), for instance, is not changed by time reversal. This may be seen by
multlplymg the transformed equation d(e;x;)/d(—1t) = D{({ex}) by ¢; and by
using (6.88b) and e, = 1. We may also split the Fokker-Planck operator into a
reversible and an irreversible part

Lpp(t) =L o (0) +L o ((x)  with (6.89)
L) = — %D,-”V({x}) = — L, ((ex) , (6.902)
a ir 82 ir
Li(ix) = — -2 Din(pe) + Di((x})
ox; 10X;
=L, ({ex), (6.90b)

where the last result follows from (6.88, 95). The Fokker-Planck equation with
only the reversible part is not changed by time reversal, i.e., it describes the
reversible motion, whereas the Fokker-Planck equation with only the irreversible
part changes its sign, i.e., it describes the irreversible motion. (8 W/9¢ changes its
sign on time reversal.) The reversible operator L ., is sometimes called a stream-
ing operator and the irreversible operator L, the collison operator.

If the stationary distribution function is written in the form (6.31), we can
define an irreversible probability current by [all arguments are {x}, compare (6.3)]

si=w, (pr-2Pi , p, 0% 6.91)
axj' ax

The total probability current may then be written as

S;=Sry s, (6.92)
where the reversible probability current is defined by

SFY = W, DI (6.93)

The operator equation (6.81) with W ({ex]) replaced by Wy ({x}) reads
explicitly

{- 8iD,-({x}) + 5 o* D,,-({x})} W (i)

X; x;0X;

82
_w.n D, Dy(lex)) ———————1.
s({x}){ e (e,xf) + Dytiex) a(e,-x,-)a(efxf)}
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Considering the left-hand side we shift the operators 8/9x; through from left to
right. Then we write the terms of the right-hand side on the left-hand side. By
using (6.3, 87b, 92, 93) and D;; = D;; we thus obtain

AU +SEGD) 255 2
a .

ox; X;
2
T W) D (o) — &6, Dy (ex)] —— =0 . (6.94)
4] [axj'

This operator equation can be valid only if the coefficients in front of the zeroth,
first and second derivatives vanish [6.2, 3, 10] (for Kramers-Moyal expansions
see [6.13])

D;({x)) = &;g;D;({ex)) , (6.95)
Sir—0, (6.96)
dSI/8x,=0. (6.97)

Conditions (6.96, 97) read explicitly, see (6.91, 93),

Dir = 8Dy _Dij_aq) , (6.964a)
axj axj
l.”CV
9D, - Dj% 00 =0. (6.97a)
ox; ox;

Conditions (6.95 —97) are the sufficient and necessary conditions for detailed
balance. These conditions are sufficient as may be seen as follows. From (6.88a,
95, 96a) we conclude &({x}) = D({ex)), i.e., we get (6.80). Because (6.94 and 81)
are equivalent, it follows that (6.79 and 85) must also be valid.

A necessary condition for the stationary solution to have a maximum or a
minimum is obviously given by d®/8x; =0, i.e., by

D}'=93D;/0x;. (6.98)

If the diffusion coefficient does not depend on {x} the maximum or minimum can
occur only at those {x} where the drift coefficient D;" vanishes.

By comparing (6.87¢, 96a, 97a) with (6.43, 39, 34) respectively, we see that
the irreversible drift coefficient DY is now equal to the D{® coefficient and that
the reversible drift coefficient DI*" is equal to the D{® coefficient. Hence, the de-
composition of the drift vector in (6.43) is now a priori known, and the results of
Sect. 6.3 can be used. For instance, the generalized potential and therefore the
stationary distribution (6.31) follow from the line integral (6.42), if the inverse of
Dj; exists. In this case D' must also obey (6.41), where A4, is given by (6.40) with
D,(S) replaced by DF.
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If we apply the transformation (6.35), the key relation (6.81) for detailed
balance then takes the form [6.10]

L({x)=L"*({ex). (6.99)

The transformed reversible operator L ., is then the anti-Hermitian operator
(6.37) with D = D" and the transformed irreversible operator L is then the
Hermitian operator (6.36) with D = DI, The eigenfunctions w,({x}) of L ({x})
and the eigenfunctions y, ({x}) of the adjoint operator L *({x}) are therefore
connected by

wu() = wi (ex)) s vy (%) = wu(lex)) . (6.100)

These connections can be used to simplify (6.51, 52) for P and W,. The joint dis-
tribution (6.52), for instance, now reads (f=t')

Wa(ixl, 1, 17) = wol{x) wo(x')) L () wufex e M= (6.101)
Because yo({x}) = wo({ex)), it is explicitly seen that (6.85) is fulfilled.

Singular Diffusion Matrix

If the diffusion matrix is not positive definite it must then be semidefinite, i.e.
Det{D} is zero and the inverse of D;; does not exist. If, for instance, D;; has the
special form

(DR ...DEy 0...0)

D®...DE,0...0 DO
D= - < > (6.102)

0 0

where the submatrix D{P (i, j M) is positive definite, D ~" in (6.40 — 42) must be
replaced by (D®)~!, where the indices are restricted to i, j <M. The dependence
of the generalized potential on the first M variables (xy,..., X)) can then be
determined from (6.42). To determine the dependence of @ on the other variables
(6.96, 97) must be used.

Example: Kramers Equation
For Kramers equation (4.112) the drift and diffusion coefficients are given by
(3.131). Obviously, the position is an even variable and the velocity an odd
variable. The irreversible and the reversible drift coefficients read:

DI =0, DI = -y,

DF=v, Df'=-f(x).

(6.103)
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The diffusion matrix is singular
D,=D,=D,=0; D,=D®=ykT/m. (6.104)
The v dependence of @ follows from [see (6.96a)]

1 muv?

- m
-Ddv=——\|vdv = +h. 6.105
( ) ka kT ( )

P(x,v) = |

v

The integration constant # may depend on x. If detailed balance holds, this x
dependence must be obtained from (6.97), i.e., from

asi™ oSy :Nst<8(ve‘¢) .\ a(—f'(x)e—“’))

+
ox ov ox ov

ox

thei(pU <f,(x)m _hr> =0
kT

Mt e 22 - 22
ov

which immediately leads to
h(x) = mf(x)/(kT) + const. (6.106)

Thus all the conditions (6.95 — 97) are fulfilled and therefore we have shown that
detailed balance is valid.

6.5 Ornstein-Uhlenbeck Process

For the Ornstein-Uhlenbeck process [1.5, 1.7] the drift coefficient is linear and
the diffusion coefficient constant, i.e.,

D;= —y;x;; v, Dj=Dj; const. matrices . (6.107)

As discussed in Sect. 3.2, the corresponding Langevin equations can be solved
and analytic expressions for the correlation functions can be obtained. Therefore
it is not surprising that the Fokker-Planck equation can also be solved exactly for
an Ornstein-Uhlenbeck process. The stochastic variables and the Langevin forces
are coupled by the linear transformation (3.43), therefore the distribution func-
tions of the stochastic variables must be Gaussian distributions, because the
Langevin forces are Gaussian distributed (see the remark at the end of Sect.
2.3.3).
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We now want to solve the Fokker-Planck equation (6.1, 2), where the drift
and diffusion coefficients are given by (6.107). For the transition probability
P({x},t|{x'},t") this equation reads

oP ) 0P
=y x:P)+ D, , (6.108)
ar ox Y 8x,0x;
where P must satisfy the initial condition
P, 0|}, 17) = (I — 7). (6.109)

If we express P by its Fourier transform with respect to the variables {x}, i.e., by
P(x), t|{x", b)) = @m) Nfel®xt 4k poigd ¢ |6x), ¢)dNk (6.110)

we obtain for the Fourier transform the first-order differential equation (one has
to replace 0/9x; by ik;and x; by i0/9k;)

P apP ~
— = —y;k;—— — D k;k;P. (6.111)
ot ok, U

The initial condition (6.109) is transformed to
Pk}t |[{x", 1) = exp(—ik;x)) . (6.112)

The first-order equation (6.111) may be solved by the method of characteristics
[6.14]. Here we do not apply this method but proceed as follows. Because we
already know that P and therefore P must be Gaussian functions, we make the
‘ansatz’ (o; = gj;)

Pk}, t|ix"t") = exp[—ik;M(t—t') — Lkik;o;(t—t)] . (6.113)
Inserting this ‘ansatz’ into (6.111) leads to
L apP ~
P+ )’Ukla—kJ+DUklkJP
=0.

This equation requires that M; and o; must obey the differential equations

M= —y;M; (6.114)

gy

Gj= —Yu0;—Ypoi+2Dy. (6.115)
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[To obtain the last equation one has to change indices and observe that in 4 ikik;
the antisymmetric part of the matrix drops out. Therefore only the symmetric
part of ye appears in (6.115).] The initial condition (6.112) requires the following
initial conditions for M; and g;;:

M;0)=x/; 0;0)=0. (6.116)
The solution of (6.114) with (6.116) can be written as
Mi(t—1t)=Gy(t—1t")x}, (6.117)

where G;(¢) is the Green’s function of the homogeneous Langevin equation
(3.31), i.e., it obeys (3.36) with the initial condition (3.35). A formal solution is
given by (3.37). In terms of the Green’s function G ; the solution of (6.115) with
the initial condition (6.116) reads (3.45, 46)

o;(1) = fGik(T’)st(T')dT'ZDks. (6.118)
0

Expansion into a Biorthogonal Set

We now assume that a complete biorthogonal set of the matrix y exists, i.e.,
Yt = Aqu(®; 0@y = 1,0 (6.119)
with the orthonormality and completeness relation

Lo@u® =5 u®o =5, (6.120)

a

(summation convention for Latin indices but not for Greek indices). Such a
complete biorthogonal set exists if the N eigenvalues are all different. Otherwise
the matrix y can be reduced to a Jordan canonical form only [6.9]. To avoid these
forms we may change the matrix y;; by adding terms 8)7,-j so that all eigenvalues
are different. In the final results we may then take the limit ¢— 0. The spectral
decomposition of the matrix y reads

Yi= X /lau,(")vj(-“’ (6.121)
o
and W{C have
G,.j\V) = [exp(—yN)]; = L e Mu{@o(®, (6.122)
a

By inserting this expression in (6.118) we can perform the integration, obtaining

— e (Aatipit

1
g;(H)=2Y% D@By (@
Y o, B ia+ }‘ﬁ ! 4
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D@ — o@D, o) (6.123)

For symmetric matrices y; all the eigenvalues are real and the eigenvectors u{®

and v{? coincide.
Transition Probability Density

If we now insert (6.113) into (6.110) and perform the integration (the integration
is explained in Sect. 2.3.3), we arrive at

P, t)ix), ') = @n) "V [Deta(t—1)]~V?
x exp{— Lo~ (t— 1)) ylxi— Gult — t') x}]
X [Xj—Gjl(t—t’)X]l]}. (6124)

Stationary Distribution

If all real parts of the eigenvalues of the damping matrix y; are larger than zero, a
stationary solution exists. For large — ¢’ the Green’s function G will be zero
and (6.124) reduces to

Wy (x) = @m) "M [Deta(oo)] " exp{— Lo~ ()] x;X;} - (6.125)
The matrix g;;(o) is determined from [see (6.115)]

Y 0i(®) + y;;61(®) = 2D (6.126)
or from (6.118). If the biorthogonal set (6.119) is used, we have from (6.123)

0(®) =2 ¥ D@Pu@uP/(A,+ Ap) . (6.127)
a’ﬁ

With the help of this expression and because of (6.120, 122), (6.123) becomes
0;(t) = [059;,— Gis(1) G;(1)] G () . (6.128)

This relation can also be proved by inserting (6.126) into (6.118) and by using
=Yk Gy = Gj; (3.36).

Joint Probability Density

In the stationary state the joint probability density is given by P({x},t)x'} 1)
X W ({x'}). With the help of this joint probability density any two-time expecta-
tion value can be calculated by integration.

Potential Condition

In accordance with (6.87—88) we split the matrix y into an irreversible and
reversible matrix
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ir

vi= v+, v = Hygxevye . (6.129)
Then D) = —y}}xj is the irreversible and D/*= —y;™x; the reversible drift

coefficient. If the inverse of D; exists we can apply the potential condition
(6.96 a) which requires that

D~ Hyyh= D k. (6.130)
From (6.96a) we obtain

o° P
ax,-axk

=07 ()= (D", ¥k. (6.131)

[If (6.130) is not fulfilled, (6.131) is not a solution because the right-hand side is
then no longer symmetric as it should be.] If the inverse of D;; does not exist, we
obtain from (6.96a) the condition

Yie=Dylo™ ()] - (6.132)
It follows from (6.97, 126, 131) that yj” must obey the relations
vi =05 yio()+ v ou() =0. (6.133)

Expectation Values

Expectation values are obtained from (6.124) or from the joint probability
density by integration. For the calculation of simple forms of expectation values
itis — because of the linearity of the corresponding Langevin equation — easier
to treat the Ornstein-Uhlenbeck process by the Langevin equation method. If we
need, for instance, the expectation value (x;(¢)), we may directly integrate (3.31)
and take the expectation value as in Sect. 3.2. One may also derive an equation of
motion for expectation values directly from the Fokker-Planck equation (6.108).
Multiplying, for instance, (6.108) by x; and integrating the resulting equation,
i.e.,
2

0 0 o°P
— [x;Pd™x = [{x;y;, — (x, P)d"x + {x.D; d™x,
ot 5 i 5 iVik an k 5 ik aijXk
by using partial integration we obtain
d
d—t<x,-(t)> = —yu X)) . (6.134)

This equation must then be solved. This method is usually simpler than working
with the general solution (6.124) of the Fokker-Planck equation.

Applications of the results of this subsection to the Kramers equation (4.112)
for a harmonic potential are given in Sect. 10.2.1.
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Time-Dependent Matrices

If the matrix y; and the diffusion matrix D depend on time we still obtain for P
a Gaussian distribution function. The moments M,(z, ¢') follow from the solution
of (6.114) which can be found with the help of the Green’s function G(z,¢') of
(6.114). The matrix ¢ follows from (6.115) [1.24].

6.6 Further Methods for Solving the Fokker-Planck Equation

If no analytic expressions can be found the difficulty of solving a Fokker-Planck
equation usually increases with increasing number of variables. At first, one may
therefore try to eliminate some variables. If some variables decay very rapidly
(fast variables) they may be eliminated adiabatically. If the drift and diffusion
coefficients do not depend on some variables, the latter may also be eliminated.
These methods are treated in Sects. 8.2, 3 and will therefore not be discussed
here.

6.6.1 Transformation of Variables

One may transform the variables in such a way that the transformed Fokker-
Planck equation can be solved analytically. The transformed coefficients are
given by (4.131, 132). The problem of finding such a transformation is, however,
as hard as solving the Fokker-Planck equation. The method is usually applied in
the opposite way. One starts with a Fokker-Planck equation whose solution is
known, e.g., the Fokker-Planck equation for an Ornstein-Uhlenbeck process. If
one makes a nonlinear transformation of variables, one obtains a complicated
Fokker-Planck equation which, of course, can then be solved.

6.6.2 Variational Method

If the anti-Hermitian operator L 5 in (6.35) is absent, the eigenvalues A and the
eigenfunctions y of Ly given by (6.46) can be obtained from a variational
problem. The function y which minimizes

| D,.,-E*’i OV 4 yy?)atx
8x,~ 8xj
A= (6.135)
fw?d™x

leads to the lowest eigenfunction . The minimum of this expression is then the
lowest eigenvalue 1,. The next eigenfunction y and eigenvalue are found by
minimizing (6.135) subject to the auxiliary condition

fwowd™x=0, (6.136)
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and so on, see the discussion in Sect. 5.9.1 for the one-variable case. Similar to
the one-variable case, lower bounds for the eigenvalues can also be found.

6.6.3 Reduction to an Hermitian Problem

The problem of finding the stationary solution of the Fokker-Planck equation
can always be reduced to a real Hermitian eigenvalue problem. (More and better
techniques exist for solving Hermitian eigenvalue problems than for solving non-
Hermitian problems.) Obviously, the operator L gL pp is an Hermitian operator.
If we have found a solution of LgpLgp W =0 we have also found a solution of
Lgp W= 0. This may be seen as follows. Using the notation

§WALgpLigp Wod™x = (W3, LipLep W3)
we have the following steps of conclusions

LipLepW=0= (W,LipLepW) =0
ft 4
LepW=0 & LppW,LepW)=0.

Seybold [6.15] has applied this method to calculate the stationary distribution of
a Fokker-Planck equation where the detailed balance condition is not valid.

6.6.4 Numerical Integration

One way of performing a numerical integration of the Fokker-Planck equation
(6.1, 2) is to use instead of the continuous variables {x} the discrete variables {1},
defined by x; = Ax;n;(no summation convention), with discrete times t,=A41tm.
If the differentials are then approximated by differences in a consistent way,
solving the Fokker-Planck equation is reduced to iterating a difference equation.
The difference equations must be stable in the sense that the probability error
does not increase faster than the probability itself, otherwise one does not obtain
an approximate solution to the continuous Fokker-Planck equation. As dis-
cussed in the literature [6.16 — 18], it is crucial for this stability that the differen-
tials are approximated by appropriate differences.

Another difficulty arises for natural boundary conditions where the variables
extend to infinity. Such problems for infinite regions must be approximated bya
problem for a finite region.

6.6.5 Expansion into Complete Sets

The method will be explained for a Fokker-Planck equation with two variables x
and y. Though the method may in principle be applied to a Fokker-Planck equa-
tion with an arbitrary number of variables, it becomes less practical for a greater
number of variables. We first assume that we have two complete orthonormal-
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ized sets 9?(x) and w,(») which satisfy the boundary conditions for x and y. If x
and y extend from minus infinity to plus infinity (natural boundary conditions)
we may use, for instance, Hermite functions ¢9(x) = N 9H,(ax) exp(— a*x?/2)
and y,(y) = N,H, () exp(— B%y%/2) with suitable scaling factors o and g. One
may, of course, use complete sets which are more adapted to the problem, as pro-
posed in the one-variable case (Sect. 5.9.3). Because the sets are complete the
probability density may be expanded similarly to the one-variable case (5.104)

W(x,p,1) = F(x,») ¥ i) 97 (x) ¥, ) - (6.137)
q,n

The choice of the function F(x,y) will be discussed later on. (It should be men-
tioned that the expansion functions need not necessarily be of a product form.) If
we insert (6.137) into the Fokker-Planck equation, we obtain an infinite system
of coupled differential equations for the expansion coefficients ¢, One choice
for this system is given by (assuming F(x,y) * 0)

= ¥ IF LpFlch. (6.138)

p,m

Here we denoted the matrix element of an operator A by

AL = [[lp?x) w,]* A 9" (xX) ¥,,(¥)dxdy. (6.139)
If we do not divide by F(x,y) we obtain the more complicated system

Y F&éh = ¥ [LgpFlich, (6.140)

p,m p,m

which may, however, have certain advantages (see below).

If the infinite system is truncated at ¢ = Q and n=N we may solve it
numerically, leading to approximate solutions of the Fokker-Planck equation.
Because the number of equations in the truncated system is of the order ON, we
can use only low Q and N values. As an example, in Sect. 12.5.2 we obtain
the transient of laser oscillation by solving the truncated coupled equations
(6.138).

6.6.6 Matrix Continued-Fraction Method
Sometimes the structure of the system (6.138) is such that only nearest neighbors
with respect to the lower index are coupled. (If such a coupling occurs for the

upper indices, we may of course change notation.) If we introduce the column
vector

e = | (6.141)
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the system (6.138) then has the form of the vector recurrence relation (9.10),
which can be solved by matrix continued fractions, as explained in Chap. 9. The
advantage of the matrix continued-fraction method is that we now only have to
invert Q X Q matrices N times. This is much easier to perform than to invert the
Q- N x Q- N matrices in (6.138) once. Therefore much higher Q and N values
can be treated by this method.

If M nearest neighbors with respect to the lower index are coupled, we have to
use a Q- M dimensional column vector, so may again cast (6.138) into a tri-
diagonal vector recurrence relation, as explained in Chap. 9.

As already discussed for the one-variable case, M nearest-neighbor coupling
is valid for a large class of Fokker-Planck operators. If, for instance, we have
natural boundary conditions, if we use Hermite functions and if D; and Dj are
given by polynomials in y of finite order, we obtain a finite number of nearest-
neighbor couplings in the lower index for F = 1. (The coefficients of the poly-
nomial may depend on x.) By using a suitable notation the equation of motion
can then be cast into the tridiagonal vector recurrence relation (9.10). If the drift
and diffusion coefficients are rational functions in y (i.e., quotient of two poly-
nomials in y) and if we choose F to be the common denominator, we can then
cast the equation for the coefficients into the form (9.121), which may also be
solved by matrix continued fractions. Whether the method will actually work
depends on the dimension of matrices to be inverted. This dimension in turn
depends on the number of expansion terms which must be used to approXimate
the distribution function (6.137) fairly well.

General applications of the matrix continued-fraction method to the Kramers
equation are given in Chap. 10. Explicit numerical results for Brownian motion
in a periodic potential are presented in Chap. 11. For a simple laser model, a
Fokker-Planck equation for two variables (intensity, inversion) without detailed
balance was solved by Mdrsch [6.19] using this method. In optical bistability a
Fokker-Planck equation for two variables (intensity, phase) has to be solved.
Haug et al. [6.20] have investigated the optical bistability due to a two-photon
absorption resonance also using this method. We conclude from these examples
that the matrix continued-fraction method seems to be very effective for treating
some Fokker-Planck equations for two variables without detailed balance, which
can hardly be solved by other methods. The method is also useful for obtaining
eigenvalues and eigenfunctions in those cases where the problem cannot be
reduced to an Hermitian one. As shown in App. A1, certain expectation values
of distribution functions, which obey Fokker-Planck equations corresponding to
linear differential equations with multiplicative colored noise, can also be
obtained by the matrix continued-fraction method.

One restriction of the matrix continued-fraction method, however, is the fol-
lowing: for very small diffusion coefficients the distribution function gets more
peaked and therefore more coefficients in the expansion have to be taken into
account. Thus, the dimension of the matrices to be inverted also increases. For
numerical calculations the method is then no longer tractable.
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6.6.7 WKB Method

For very small diffusion coefficients one may use a WKB method. This method
has been applied to diffusion in one-dimensional and multi-dimensional bistable
potentials by Caroli et al. [5.24, 6.21]. It essentially consists in the following.
After indicating the smallness of the diffusion coefficient by a parameter &> 0
we insert in the Fokker-Planck equation

. ) 82
W=-—D;+¢ D;\w (6.142)
X 8x,-8xj
the ‘ansatz’
W =Aexp <— Lw) (6.143)
£

and obtain in lowest order

w=—D;2% _p, 2% O o). (6.144)

8x,- 8X,' 8Xj

This first-order nonlinear partial differential equation is usually easier to solve
than the Fokker-Planck equation. It can be treated by the method of charac-
teristics [6.14]. The WKB method is well known in quantum mechanics, where it
is useful for describing the transition to classical mechanics, and in optics, where
it is useful for describing the transition from wave optics to ray optics. The
method is also called the ray method [6.22], where equations for the higher-order
terms can also be found. (In higher order A also depends on variables.) Some
care has to be taken for the application of the WKB method. We know from
quantum mechanics [6.23] that at a classical turning point the WKB solution is
not valid. Near these points the full Schrodinger equation must be used and this
solution must then be matched with the WKB solutions. Because in certain cases
(e.g. detailed balance) the Fokker-Planck equation can be transformed to a
Schrodinger equation, the same should also be true for the Fokker-Planck
equation, see [5.24, 6.21] for an application to bistable systems.
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We consider a system in a stable steady state or in equilibrium. If we disturb the
system by applying some external fields or by changing some parameter the
system will be driven away from its former steady state. The external fields or the
changes of the parameters are usually small. Then we only need to take into
account those deviations from the steady state which are linear in the external
fields (linear response). The deviations of expectation values from their steady-
state values also depend linearly on the fields. This dependence can be described
by a response function. If the external fields are switched off, the deviations
from the steady state decay or dissipate (in the physical literature the word
‘dissipate’ is usually used for the decay of energy).

The response function describes the decay of an expectation value to its
steady-state value, thus describing the dissipation of the deviation of an expecta-
tion value from its steady-state value.

In a steady state the variables are not at rest but fluctuating. The fluctuations
of two variables A4 (¢) and B(¢) are described by their mutual correlation function
(A(t1) B(t,)). Similar to an external field the fluctuations also drive the system
away from its steady state and then the system decays to its steady state again.
Therefore one expects that these correlation functions (describing fluctuations)
are in some way connected to the response functions (describing dissipation).

These connections are called dissipation-fluctuation or fluctuation-dissipa-
tion theorems. They have been derived for a large class of classical and quantum
mechanical systems [7.1 — 4]. The relations in which the transport coefficients are
expressed in terms of time integrals over correlation functions are the well-known
Green-Kubo expressions [7.1, 3]. Dissipation-fluctuation theorems for systems in
nonthermal equilibrium, which are described by Fokker-Planck equations, have
been derived by Agarwal [7.5].

For linear systems, i.e., linear Langevin equations, one can calculate the
response function of the variable x by a deterministic equation, because the
Langevin force drops out. One can then use the dissipation-fluctuation theorem
to obtain the correlation function from this deterministic equation.

In this chapter we first derive a general expression of the linear response func-
tion for systems described by Fokker-Planck equations. We shall then see that
this expression can always be written as a correlation function, i.e., dissipation-
fluctuation theorems exist. Next we discuss for some cases the connection of
different correlation functions and thus obtain different forms of the dissipation-
fluctuation theorem. Finally, it is shown how the Fourier transform of the
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response function, i.e., the susceptibility, is connected to the Fourier transform
of the correlation function, i.c., to the spectral density.

7.1 Linear Response Function

If our system is described by a Fokker-Planck equation and if some external
fields or some parameters depend on time, the Fokker-Planck operator generally
depends on time. It is written in the form

LFP({X}’ t) = LFP({x}) + Lext({x}’ t) . (71)

We assume that the time-independent Fokker-Planck operator Lgp has the
stationary solution W, i.e.,

Lgp(ix)) Wa(ix)) = 0. (7.2)

Any solution of the Fokker-Planck equation can be split into the stationary
solution and a time-dependent solution

W(ix}, 1) = Wy(ix}) + w(lx}, 1) . (7.3)

If the external fields or the changes of external parameters are small L, and w
will also be small. In the Fokker-Planck equation

W(lx), 1) = w({ah 1) = Lpp(fx}, 1) W, 1)
= Lpp () + L et (6}, O [ Wi () + w (), 1))

we may therefore neglect the term L. ({x}, 7) - w({x}, t) and retain only the linear
terms, i.e.,

w({x}, 1) = Lpp () w(lxh 1) + Lex ({5, 1) Wa(iX)) - (7.4)

A formal solution of this equation is given by
t )
w(lpd, 1) = § P COL (i, 1) W dr' (7.5)

as is easily seen by insertion.

The Fokker-Planck operator L ({x}, f) which describes the time variations of
the external fields or of some parameters generally reads (summation conven-
tion)

0 (exp) 3’ (ext)

Ley(x},0) = — — D ({x}, 1) + ——— D (x}, 1) (7.6)

8x,- Ox;0x;

X xj
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We now assume that the drift and diffusion coefficients depend on time in a
multiplicative way, i.e., (no summation convention)

Dl(ext) ({x}, f) = Dl(ext)({x}) -Fi(),

.7
DO ({x}, 1) = DFO(x)) - () .
The operator in (7.6) is then a sum of operators of the form
Lext({x}9 1= Lext({x}) -F(t), (7.8)

where L ({x}) stands for (no summation convention)

) (ext) 82 (ext)
- _Di ({X}) or —DU ({X})
X 8x,- 8Xj

and F(¢) for Fy(¢) or Fj;(t), respectively. Because of the linearity it is therefore
sufficient to use (7.8) in (7.5) to calculate w({x}, ). The deviation 4A of any
expectation value of A ({x}) from its stationary value then takes the form

AA@) = JAED wlxl, £)d™x
= TRA,L(t—t’)F(t’)dt’ , (7.9)

where the response function R, ;(¢) describing the response of A to L, is
defined by

Rar(t) =A@l IL (o) Wy()dNx  for 120,

(7.10)
RA’L(I‘)=O for t<0.

The following three linear response functions are used.

a) Pulse-Response Function
The response of A4 to a J-function force F(¢) = d(¢) is called the pulse-response
function

AAP) = T Ry p(t—1') 3t dr’ = R4 (7.112)

and is just given by (7.10) [It should be mentioned that the force must be small
for the linear response theory to be valid. It would be better to write
F(t) = €6(t), where ¢ is small, so AAP(¢) is then ¢ times R, (0]

b) Step-Response Function or Excitation Function

The step-response function 4.4 ©(¢) [7.6, 7] or the excitation function [7.3] is the
linear response of the system to an external field, which is proportional to the
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step function ©(t), i.e., the constant external field is switched on at r=0.
Inserting the step function in (7.9) we obtain

oo t
AA9@)= [ Ry (t—1")OW')dt' = R,y (t—1")dl
o 0

t
= gRA,L(t’)dt’ , (7.11b)

i.c., the time derivative of the step-response function AA®(t) is equal to the
pulse-response function 4A®P () =R, (1). Att=0 A4A ® is zero.

¢) After-Effect-Response Function or Relaxation Function

The after-effect-response function AA® () [7.6, 7] or the relaxation function
[7.3] is the linear response of the system to the step function ©(—?), i.e., the con-
stant external field is switched off at = 0. We have

o 0
AAD@Y = | Ry(t—1)O(—1)dt' = § Ry p(t—1)dr’

=R, (t)dt', (7.11¢)
t

i.e., the negative derivative of the after-effect-response function 4.4 @) is
equal to the pulse-response function 4A®P () =R, (t). At t=0, 44 @
describes the static linear response to a unit force. Obviously, for all ¢ the sum of
the step-response function and the after-effect-response function is equal to the
static linear response to a unit force.

7.2 Correlation Functions

We now consider correlation functions of A({&(#;)}) and B({£(£,))) for the dif-
ferent times #, and #, in the stationary state. Because of the stationarity, the cor-
relation function depends only on the time difference ¢ = ¢; — ,. The correlation
function may then be defined by

K4, p(t) = CACOH BELO)))
= [A ) B(x") Walx), £ x'},00dNxdx' (7.12)
If we express W, by the product of the transition probability times the stationary

distribution and if we insert the formal solution for the transition probability, we
have (¢ = 0)
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Ka,8(t) = [FA (XD P({x}, t])x"},0) B(x ') Wy (fr' ) dNxd Ny
= {§A({x) PPN — [xD) B(x"}) We(x')dNxdNx

By performing the integration over {x'} we obtain the following result for the sta-
tionary correlation function for

t=0:
K4, 5(1) = JA{x}) e"PP & B () W () dVx . (7.13)

For t =0 we interchange the factors in (7.12), using the stationarity of the
process (subtract ¢ in both time arguments),

CALONBELOD) = (BUE(-DA{EOD) (7.123)

and thus obtain for
t=0:

K, 5(t) = {B({x}) "0 4 () Wy, () d V. (7.132)

Dissipation-Fluctuation Theorem

By comparing (7.10) with (7.13) we see that the response function (710 fort =0
is given by the correlation (7.13) if the function B({x}) is defined by

B({x}) = [We (D] ™" Loy (X)) W)

=Py et {x}) e~ P (7.14)

In the last line we have introduced the generalized potential, see (6.31). The dis-
sipation-fluctuation theorem may thus be written as

Ryr(t)=K,p(t) for =0,
(7.15)

RA’L(t)ZO for t<0,

where B({x}) has to be calculated according to (7.14). Sometimes we add the
index B to the response function to indicate the external field.

Connection Between Correlation Functions

The correlation function (7.13) may be expressed by time derivatives of other
correlation functions. Thus one obtains different forms of the dissipation-
fluctuation theorems. To derive these different forms one has to specify L gp and
Lext'
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Example 1

In the first example we make the following assumptions: the diffusion matrix is
independent of the variables {x} and it is positive definite. Furthermore, the
detailed balance condition (6.41) should be valid and the reversible drift coef-
ficient (6.88b) is zero. We further assume that the external force acts on the ith
variable in an additive way, i.e., Lq({x},?) is given by

LW, 0 =LO(x) - F(), LY@ = —9/0x;. (7.16)

For the Langevin equation this means that we add the force F(¢) on the right-
hand side of (3.110) at the ith component. Using (6.96a) we then get for the
function B({x}) in (7.14)

]

Bi({x)) = —e¢%e—¢—a—x~ — (DD (1.47)

Furthermore, we have for the above assumptions

ax 8x; 0@
(LFle st) xl(LFP I/Vst) — + 2ij - I/Vst
axk Ox, 0Ox;
—[D;=2Dy(D ") uD)) Wy = Di Wy . (7.18)

Therefore we obtain the following connection between the correlation functions
KA,x,- and KA,D[:

%KA,X,.(t) = [A (L px, Wy) d™x
= fAelrr'D,WdNx = K4 p (1) . (7.19)
The response function R 4 ; (¢) then takes the form [7.5]
R (t)=Kap()=—(D aKap,t)
~ 0 Kas 0 (7.20)

Example 11

We assume that the process is described by the Kramers equation (4.112). For an
external force F in direction x we have

Ley(x,0) = — a—au' (7.21)

1
m



7.2 Correlation Functions 169

In the Langevin equations (3.130) this would mean that we add the force F(¢)/m
on the right-hand side of the first equation. Because the generalized potential is
given by (6.105) we get for B:

B=e?(_-1 B \e-o_ v (7.22)
m Qv kT
The response of the velocity thus reads (¢ = 0)
1 1
R, ;(1)=K, g(t) =——K, ,(t) =—<v(t)v(0)) . 7.23
() ,8(?) T ,o(f) kT(()() (7.23)

For the Kramers equation this velocity correlation function can be expressed by
the correlation function of f”(x). This is seen as follows: we obviously have

2
<% +9) K, () = [foLep+ y) ™o Wydxdo
= [{[Lp+ y)v] P (Lpp+y) v Wydxdo.

Because of
3 ) kT 92
(Lgpt+y)v= v——[yv+f’(x)]_+7’_ S+ yio
ox dv m v
= —f'(x)
and
) kT 0dv aW
LeptP)oWy=|2yv+f (X)— w,+2y 2l 20
dv m dv av
=f’ (x) I/I/st_ y
we obtain
d 2
<-E + V> K!),u(t) = "Kf'(x),f’(x)(t) . (7.24)

This relation can also be derived by using the corresponding Langevin equations.

Example 111

Here we consider again the Kramers equation (4.112), but we now assume that
the temperature 7 changes in time, i.e.,

T=TNN+AT@)/TI=T[1+F()], F@t)=AT@)/T, (7.25)

ykT 82

- (7.26)

Lext(xav) =
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The B function in (7.14) then reads

kT 8% _ muv?
B=e?t 9 oo ~1). 7.27
m dv? y< kT > ( )

Using the energy E = +m v+ mf(x) and

2
LypEWy = Lip <’"2" + mf> Wy
= — y(mvP—kT) W, (7.28)
we have
Koot =——— Yk, 00 (7.29)
AB kT dt AET ' '

Thus the response of the energy (4 = E) is in this case given by the negative time
derivative of the energy correlation function divided by kT, i.e., (2 0)

1 d

d
—Kg p(t) = - E(t)E(0)) . 7.30
py () T dt< (D E©) (7.30)

RE,L(t) = - ﬁ

By using (E(o) E(0)) = (E(0) ) we get for the static response

(E©O)?) -~ E©)

7.31
T (7.31)

AES= §RE’L(t)dt=
0

This result also follows from

VE exp —__E  Vavax JE exp ~E Vavax
| kT(L+F) kT

AE;=lim — -
fexp ——E—— dvdx fexp ——]—E— dvdx
kT(1+F) kT

F-0 F
The application of I’Hdpital’s rule leads to

2
[E*exp _E dvdx {E exp _E dvdx
| kT kT

kT E E
exp| - —— |dvdx exp| ——— |dvdx

S
- L e —<EY).
kT
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Example IV

Here we consider an Ornstein-Uhlenbeck process with an external field acting on
the ith coordinate,

Lext({x}) = - ai .

i

In terms of the Langevin equation (3.31) we have to add the force F(¢) on the
right-hand side of the ith component.
Because of (6.125) we obtain for the B function (7.14)

B;=08®/0x;= [0 ()] x;. (7.32)

The response function of the coordinate x; can therefore be expressed by the cor-
relation function (x;(#)x;(0)),

Ry, 1(1) = [07"(00)] <xx (1) x;(0) y . (7.33)

Because the Ornstein-Uhlenbeck process is linear, the Langevin force drops out
by averaging (3.31). The response function Ry (1) is therefore identical to the
Green’s function Gy;(t) of the Langevin equation (3.31). This also follows
explicitly by inserting the correlation function for the stationary state (3.56a)
into (7.33).

Sum Rules

A relation of the form (7.19) where one correlation function is connected to
the time derivative of another correlation function leads to a relation for eigen-
values and eigenfunctions. This may be seen as follows: for # = 0 (7.19) may be
written as

§AQDLpp () x; Wy () dNx
= {JAD Lep (X)) 8(fx}— D xf We((x'PdNx dMx’
= A () Di{x}) W () dx .

If we insert here (6.50) for the J function we thus obtain

% Au§ A () v, () d™x Ty () x; Wi () Ao = § A (o) D) W (o) dVx
(7.34)

(A very well known sum rule of this type is the sum rule for oscillator strength in
quantum mechanics [Ref. 5.11, p. 1318].) Sum rules are good checks for the
accuracy of numerically computed cigenvalues and eigenfunctions. Sum rules for
susceptibility are discussed in Sect. 7.3.
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7.3 Susceptibility

The convolution in (7.9) reduces to a multiplication for the corresponding
Fourier transforms. Introducing the Fourier transforms of AA(¢), F(¢) and

R4, (1),

AA(w) = TAA(t)e—“"’dt , (7.35)
Flw) = ] Faeedt, (7.36)
xa(w) = _§ Ry () e ®ds

fR4 (e '@'dt, (7.37)
0

(7.9) transforms to [5.1, p. 113]
- AA(w) = x4(w)F(w) . (7.38)

(In (7.37) we used (7.10).) The generally complex quantity x,(w) is called the
susceptibility. The real part is usually denoted by x/(w) and the imaginary part

xa(w) = xa(w)—ix4 (o). (7.39)

The minus sign is used if the Fourier transforms (7.35—37) are defined with a
minus sign. The real part is an even function in w,

xa(w) = (f)RA,L(f) cos wtdt = x4(— w) (7.40)
and the imaginary part an odd function in w,
x4 (w) = (f)RA,L(f) sinwtdt= — x4 (- w). (7.41)

(We assume that R4 ; (¢) is a real function.)

Because R 4 ;(¢) decays in time all the poles of x4(w) must lie in the upper
half of the complex  plane. It then follows that y4(w) and x4 (w) are connected
by the Kramers-Kronig relations [7.8]

@) =—-LP] 20 gy (7.422)
n —o V—



7.3 Susceptibility 173

wal@y=—p [ XM gy (7.42b)
n —o V— @

where the principal value is denoted by P,
For Brownian motion the energy dissipation is proportional to

A=y T w())F(e)de. (7.43)

If we insert here the inverse Fourier transforms of (7.35, 36) with A = v

w@®y=Qn)~" T (b(w))e®dw, (7.35a)
Fiy=2n™' | Fw)e® 'dw’, (7.36)

by using (2.84, 7.38) we obtain
A=yQ2m) " | x(w)F(w) F(- w)dw.

For real fields we have F(w) = F*(— w). Because x.(w) is even and x.' (w) is
odd, we finally get

A=y2m)~! Txé () |F(w)Pdw . (7.43a)

Hence, absorption at frequency w is proportional to x, (w). Had we used x
instead of v, the absorption at the frequency w would be proportional to

@ - X (@).

Connection to Spectral Density

The spectral density S, p(w) is the Fourier transform of the correlation function
multiplied by 2, see (2.86),
Sap(w)=2 § Kqp(t)e ®dr. (7.44)

Because of (7.15) the susceptibility is the half-sided Fourier transform of this cor-
relation function:

xa(w) = IKA,B(t)e—iw’dt. (7.45)
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If the correlation function is symmetric (antisymmetric) we can express x4(x4)

by S4 . The other part x4 (x) then follows from the Kramers-Kronig relation
(7.423a) (Eq. (7.42V)).

Symmetric Correlation Function

Ka(t) = Kq5(—1) =84 p(w) =S4 p(—w)

xa(w) = {K,4 p(f) cos a)tdt=% § KA,B(t)e_i‘”’dt
0 — oo

1
= ISA,B(O)) . (746)

Antisymmetric Correlation Function

K p(t)= —K4p(—1t) >S4 p(w) = =S4 p(— w)

X,,q’(a)) = SKA,B(t) sinwtdt = —% S KA,B(t)e_iwtdt
0 1 —o
1
= ——3848(w). (7.47)
4i

Because of the stationarity (7.12a) we have

K, p(t)=Kp 4(—1)

and therefore a correlation function for 4 = B is always symmetric in the
stationary state

Ky a(t) =Ky 4(-10).

In Examples II and III we expressed the response function by the (v (¢)v(0))
(7.23) and the (E(¢)E(0)) (7.30) correlation functions. Therefore we can
immediately express the real part of the susceptibility in Example II and the
imaginary part of the susceptibility in Example III by the corresponding spectral
densities:

1 1
(W) =— —8, J(w for Example 11 , 7.48
Xv () T a ,o(®) (7.48)
XE (w) —L Qs (w) for Example 111 (7.49)
£ kT 4 5F ' '
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Connection to the Einstein Relation

Equation (7.48) is the dissipation-fluctuation theorem for Brownian motion in
the frequency domain. If applied to free Brownian motion, for w = 0 (7.48) is
identical to the Einstein relation (3.19). This is seen as follows. If the response
function for free Brownian motion R, ;(t) = exp(—yt)/m is integrated over
time, we get

2.(0) = ZR,,,L(t)dt= 1/(my) . (7.50)

On the other hand, the diffusion constant, defined by (3.18), can be expressed by

= hm? —<[x(t) x(O)]%) = 11m<v(t)[x(t) x(0))

t-»

t t
= lim {(w () v(t')ydt’ = lim {Co () v(t—7))d7,
tso( t-s ()
or, after using the stationarity (add 7— ¢ to both arguments), by
D= j(v(r)v(O))drz%S,,,,,(O). (7.51)
0

By inserting (7.50, 51) into (7.48) we thus obtain the Einstein relation (3.19).

Application to Example 1

If we have even and odd variables and if detailed balance is valid the correlation
function has the following property [cf. (6.85 and 7.12a)]

xi () x(0)) = g;;{x(0)x()>
= ajai(xj(—t)x,-(O)) . (752)

Thus for ¢;¢;= 1 the correlation function is even and for ¢; g;= —1 the correla-
tion function is odd. Because of (7.20) the response function of the variable X;to
L, in Example I is

Ry ()= —(D~ 1),k = X0 x(0)) . (1.53)
The Fourier transform of this expression leads to the susceptibility
1y To-iwr d
xj{w)=—(D )ik(,‘)e d—t<xj(t)xk(0)>df-

After using partial integration, we thus obtain for the real and imaginary parts of
the susceptibility
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xi(w) = D M |:<xj(0) x(0))>— w?:(xj(t) x(0)y sin a)tdt]
xji (@) = (D“i)fkw:§:<x,-(t) x4(0)) cos wtdt.

The diffusion matrix in Example I was independent of {x} and had to satisfy
(6.95). If follows from this relation and from the symmetry of D;; that we have

(D~Y;=0 for ¢gg=—1 (7.54)

and we can express xj; and yj/ by the spectral density [7.5]

- w
X =D 1),.,CTS,Q.(w) for geg=1, (7.55)

xi =D~ 1)"‘75"’(‘”) for geg=—1 (7.56)

({x;(0)x;(0)> must vanish for g;¢;= —1).

Sum Rules

An identity in which an integration over the susceptibility appears is called a sum
rule for the susceptibility. Because x4 is the cos-transform of the correlation
function K 4 (¢), we have, for example,

2 o 2 o oo
Z fxi(w)dw="1{ [ K4 p(t) coswtdtdw
7o noo

< sin Q¢
=2 [ K4 p(t) lim
0 Q-0 it

- 2:§:KA,B(t) 5(r)dt = K 4 5(0) - (7.57)

Using (7.23, 57), the susceptibilities x, and x# in Examples II and III become
2 ® 1 5
= (@) do =—<(v () =1/m, (7.58)
mo kT

and similarly, using (7.41, 30),

dw 1 sinwt

—Sx”(w)—=3c§° T[——<E(t)E(0)>} dtdw
T 0O

w
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= _2_050 ofi(E(t)E(O))cos wtdwdt
mookT

2 = sinwt

~ lim —(E(t)E(O))—- j dw

1
— K(E©0))*> = <E(0))]. 7.59
T (E(0) 0) (7.59)
In deriving (7.59) we have used an integration by parts, hm (E(t)E(O))-
(E(0)Y, j(smx/x) dx = Z and evaluated the integral accordmg to (7.57). The

last expression in (7.59) is equal to the static response (7.31).

By expressing K4 p(f) as time derivatives of other correlation functions,
further sum rules may be derived. If the susceptibilities are obtained numerically,
the sum rules are useful for checking the accuracy of the calculations.

Application to Brownian Motion in a Harmonic Potential
Brownian motion in a harmonic potential with an external force F(¢) is described
by the Langevin equation

X+ yx+wix=F@)/m+I(). (7.60)

Because the system is linear, the response function R, ;(#) can be obtained by
averaging (7.60). Hence, it is the Green’s function of (7.60) without the Langevin
force, i.e., a solution of the harmonic oscillator equation with F(¢) = d(¢). This
Green’s function reads (¢ = 0)

RX,L(t)=Le‘V’/Zsina)1t; wi = |/ wi-y¥4 . (7.61)
wm

The response of the velocity follows from (7.61) (¢ = 0)

sin @y t> . (7.62)

vL(t)_ xL(t)_ ! e_yt/2<COSCl)1t—
m 2wy

The dissipation-fluctuation theorem (7.23) then immediately leads to the velocity
autocorrelation function

(o (D) v(0)) = — e —yi2 <cos Wyt — sina)1t>. (7.63)

20)1

The susceptibilities y,(w) and x,(w) take the form
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Xx(w) = §Rx,L(t) e-iwtdt
0

1 1 1 1

m 2wyl < Ty+i(w—wy) - Ty+i(w+ w1)>
1 wi- wl-iyw

m

= » 7.64
(02— )+ P’ (7.64)

xo(@w) = (R, (e 1dt =R, ;(0) +iw [ R, (e ' “'dt =iwx(w) .
0 0 (1.65)

Thus we finally have
wx/ _ _X”_i' (w(z)_wz)w — 1 Wo— W (7 66)
* " m (wE- 0+ yP? 2m (wo— w)+(y/2) '
2

wxy = xp = — re ! Y . (7.67)

m (cz)(z)—cz)2)2+y2w2 - dm (wo—w)2+(y/2)2

The last expressions in (7.66, 67) are valid only for positive w and small damping
constant y < wy. The dissipation of energy is described by x, = wy,’ (7.43a).



8. Reduction of the Number of Variables

Usually, the difficulty of solving the Fokker-Planck equation like any other
partial differential equation increases with increasing number of independent
variables. It is therefore advisable to eliminate as many variables as possible, so
we discuss below three cases where the number of independent variables can be
reduced.

In Sect. 8.1 we treat first-passage time problems. As shown, the mean first-
passage time can be obtained by solving an equation where the time variable no
longer appears. Though in some experiments one may really measure the first-
passage times, one usually uses the mean first-passage time to obtain approxi-
mate lifetimes for problems, where the boundary condition is slightly different
from that for the first-passage time problem.

In Sect. 8.2 we look for solutions of those Fokker-Planck equations where the
drift and diffusion coefficients do not depend on some variables. The Fourier
transform of the probability density for these variables can then be obtained by
an equation where these variables no longer appear. This equation is applied to
calculate distribution functions for variables which are time integrals of other
stochastic Markovian variables, in Sect. 8.2.1.

Finally, in Sect. 8.3 we assume that the decay constants for some variables are
much larger than those for other ones. These “fast” variables can then be
eliminated (adiabatic elimination procedure).

8.1 First-Passage Time Problems

First-passage time is the time at which the stochastic variable E(¢) first leaves a
given domain [8.1, 2, 1.12]. In the following we restrict ourselves to the one-
variable case.

If we start with the realizations at 7= 0 with £(0) = x’ (Fig. 8.1), the first-
passage time 7 is the time when £(¢) reaches a boundary for the first time. If both
boundaries are absorbing, then either ¢(T) = x, or &(7) =x;. If one of the
boundaries is reflecting we only have to take into account the other boundary.
Obviously the time 7 varies from realization to realization, i.e., the first-passage
time is a random variable.

We now want to calculate the distribution function for these first-passage
times. We are especially interested in the moments of first-passage times, because
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y Fig. 8.1. The first-passage times T of the
Eaae . - realizations &£(f) to leave the domain

X ) - X <X <X
T 0T T t

x!

X

these moments can be obtained by solving an inhomogeneous differential
equation where only the variable x will enter. We first ask for the probability
density P(x, t|x',0) for the stochastic variable &£(¢) starting at ¢ = 0 with £(0) = x’
to reach x at time ¢. If the stochastic variable reaches either x, or x; the first time
we no longer count these realizations. Therefore P must be zero for x = x; and
x = x;. In other words, the prescription that the particles are no longer counted if
they have passed a boundary is substituted by an absorbing wall. For x; <x < x;
P must satisfy the Fokker-Planck equation (5.1, 2),

%I;—=LFP(x)P; P(x,0|x,0)=d(x—x") for x;<x<x;,

(8.1)
P(x,t|x',00=0 for x=x, or Xx=uxi.

The probability W(x', f) of realizations which have started at x’ and which have
not yet reached either one of the boundaries up to the time ¢ is given by

*

W(x',t) = {P(x,t|x',0)dx . 8.2)

*

The probability —d W of those realizations which reach one of the boundaries in
the time interval (¢, ¢+ d¢) thus reads

Xy |
—dW(x',t) = — | P(x,t]x',0)dxdr. (8.3)

*

The distribution function w(7) for the first-passage time 7 is therefore given by

w(!, T) = _4Awe D) fP(x,T]x',O)dx. (8.4)

dT M

The moments of the first-passage time distribution are

T,(x") = TT”w(x’, T)dT = fp,,(x,x’)dx, 8.5
0 X1
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where p,(x,x') is defined by
Pl x") = — ET”P(x, T|x',0)dT. (8.6)
We obviously have
Polt,x') = — Eﬁ(x, TIx',0)dT = P(x,0|x',0) = S(x—x") . 8.7)
Performing a partial integration gives

Pa(6,x")y=n{T" 'P(x,T|x",00dT, nz=1. (8.8)
0

By applying the operator L gp(x) to (8.8) and using (8.1, 6), we obtain the follow-
ing system of coupled differential equations

Lep(X)pn(x,x') = —np, 1(x,x') nzt,
1.€.,
Lep(x)p1(x,x") = —d(x—x")
Lp(x) p2(x,x") = —2p1(x,x") (8.9)

Lgp(x) p3(x,x") = =3 pyr(x,x")

From this system we can obtain p,(x,x’) by solving the equations successively
starting with the first one. The boundary conditions for p, must be the same as
for P, i.e.,

P, x")=0 for x=x; or x=x,. (8.10)
The first equation of the system in (8.9) describes the stationary probability
density, if at x’ a unit rate of probability is injected into the system. [Integrating

the first equation from x’' — ¢ to x’ + ¢ leads to S(x’ + &) — S(x’ — &) = 1, where S
is the probability current (4.47).]

Formal Solution

A formal solution of (8.9) is given by
Pulx, X'y =n![—Lgp(x)] "d(x—x"). 8.11)

This formal solution also follows by integration of the formal solution of P, i.e.,
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Pale,x") = = ["Lpp(x) e o (x —x") dt
0

= n! [~Lgp(x)] "6(x—x"). (8.12)

Solution in Terms of the Adjoint Operator

Because P(x,? | x’,0) = P(x,0 | x', — ) also satisfies the backward Kolmogorov
equation (4.96),

Z_’t’ngp(xf)p, (8.13)

in (8.9, 11) we can replace the operator Lgp(x) by its adjoint acting on x/, i.e., by
Li»(x"). If x' lies outside the interval (x;, x,) the probability P must vanish, i.e.,
we may equally well solve (8.13) with the boundary condition

. P, t|x,00=0 for x'=x; and x'=Xx,. 8.14)

Hence, to obtain the moments (8.5) we may also use the adjoint equation (8.13).
We then have [8.1, 2]

LI:“rP(xl)Tn(x,)= —-nT,_1(x'); nztl,
(8.15)
To(x')=1.

For two absorbing boundaries 7,(x') must satisfy (8.14). The equation (n = 1)
for the mean first-passage time 77(x")

Lip(x)Ti(x') = —1 (8.15a)

was derived in [8.1], the system (8.15) in [8.2]. At first glance system (8. 15) seems
somewhat easier to solve than system (8.9), because here only one variable
occurs. However, to obtain for instance T;(x") for a certain value of x’ = a, one
has to solve (8.15a) for all x’ in the interval x; < x' < x,, whereas the first equa-
tion of (8.9) needs to be solved only for x' = a. As shown in Sect. 5.10.2 for a
metastable potential, both (8.15a, 9) can be used to calculate 7; leading to the
same result if the potential difference is large compared to the diffusion constant
D. It was also shown there that the inverse of the first-passage time agrees
approximately with the first eigenvalue and that the precise value of the bound-
aries x; = — A and x, = A4 are not important for 4 > Xpax (Fig. 5.8a).

It follows from the form (5.35) of the Fokker-Planck operator that the
solutions of (8.9, 15) can be obtained by quadratures for the one-variable case see
for instance (5.143). For several variables one may also define a mean first-
passage time when a particle leaves a certain domain. However, the equations for
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the moments of the first-passage times can then no longer be given in terms of
quadratures in the general case.

Boundary Conditions for the Kramers Equation

As we have seen the boundary condition for the first-passage time problem is the
boundary of an absorbing wall. For Brownian motion of particles, whose prob-
ability density P(x,v,¢|x',v,0) in phase space is a solution of the Kramers
equation (4.112), this boundary condition is more complicated than (8.14). If,
for instance, we have an absorbing wall at the left side of the domain at x; = X,
we require that probability current in x-direction must vanish for those particles
leaving the wall into the domain i.e. for the particles with positive velocities.
Because of (3.131, 4.104) we have S, = D, P = v P. Therefore we must require
that the probability density for positive velocities is zero at x; = xy,

P(xy,v,tx’,0,00=0 for v>0. (8.162a)
If we have an absorbing wall at x, = x,,,,, we have similarly
Py, v, tx’,0,00=0 for v<0. (8.16b)

The initial condition of P is given by P(x,v,0|x’,v',0) = (x —x') 6(v —v'). Here
we assume that particles with the velocity v’ are injected into the system at x’. If
the particles are injected at x’ with a velocity distribution g(v) we have to replace
the d function by g(v). )

Burschka and Titulaer {8.3, 4] calculated probability densities for the
Kramers equation with the boundary condition (8.16a) and similar conditions. In
these works further discussions and various references may also be found.

8.2 Drift and Diffusion Coefficients Independent of Some
Variables

If the drift and diffusion coefficients do not depend on some variables, let say on
Xt,..., Xy, We can reduce the problem of solving the Fokker-Planck equation to a
problem where only the other variables x,,, 1, ..., xy occur. If we make a Fourier
transform with respect to the first » variables

W(X1,. ey XN t) = (27'[)#”; W(k1,. . .,k,,,x,,+1,. ey XN t)

xei(k1x1+...+knxn)dk1...dk,, (8.17)

it is easily seen by inserting (8.17) into the Fokker-Planck equation (4.94a, 95)
and by performing partial integrations that the following equation for W with
the variables x,, ¢, ..., x, must then be solved:
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dW/dt=LpW,

Lyp=Lpp(Xpi15---5XN)

n N 9 n
= —1 EkiDi— E _Di_ E klijlj
i=1 i=n+1 OX; ij=1
) 92
+2i Z Z ki——Dy+ Z —Dy. (8.18)
i=1 j=n+1 0Xx; ij=n+1 0x;0x;

Generally, (8.18) must be solved for every Ky, ..., k,. Sometimes, however, one is
interested only in the distribution function for certain k;. If, for instance, x; = ¢
is the angle variable and one is looking only for periodic solutions in the angle
variable, k; must be an integer number and the integral must be replaced by a
sum over these integer numbers. Furthermore, if one is interested only in some
expectation values of the form <expime(¢)), only the solution of (8.18) with
k; = — m needs to be calculated. An application will be given in Sect. 12.3.

If the laser Fokker-Planck equation for the complex amplitude is trans-
formed to intensity and angle variable, the drift and diffusion coefficients do not
depend on the angle variable and therefore the reduction above may be used. For
a class of Fokker-Planck equations with two variables where the drift and diffu-
sion coefficients do not depend on one variable and where the solutions are given
in terms of hypergeometric functions, see [8.5, 6] and App. A6.

8.2.1 Time Integrals of Markovian Variables

For a stochastic variable £(¢) one may not be interested in the properties of the
stochastic variable itself but rather in the properties of the time integral
L E(¢')dt’ of the stochastic variable £(¢). Usually, the properties of the time-
1ntegrated variable can be easier measured than the properties of the variable
£(t). For instance, if &(¢) = v(¢) is the velocity of a Brownian particle, one
usually measures the position at different times x(¢) —x(#y) = jt v(t')dt’ and not
the velocity itself. Actually every measuring process needs a certaln time. Instead
of measuring the statistical properties of the velocity, one measures the proper-
ties of the time-integrated quantity

t0+T
5 v(t')dt’ . (8.19)
T

Bty T) = x(to+1)— x(to)

Only if 7 can be made very small (8.19) has the properties of the velocity
measured, otherwise the properties of ¥ are different from those of v.

For N stochastic variables {¢(#)} one may be interested in the stochastic prop-
erties of

t
(1) = tff({é(t’)},t’)dt’ . (8.20)
0
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To find the stochastic properties of 7(¢) we first assume that {¢(#)} are Markovian
variables which obey the Langevin equations (3.110, 111). Because of (8.20), the
time derivative and initial condition of I(f) are given by

IO =f{EhL 1), (8.21)
I(t) =0. (8.22)

We may add (8.21) to the Langevin equations (3.110). These combined
equations are then Langevin equations for the N+1 Markovian variables

cl(t)a ey cN(t),I(t)'

The corresponding Fokker-Planck equation for the distribution function
W(I,{x}, t) then takes the form

OW/ot=LW, (8.23)
where the operator L is given by
L = Lep({x)) — f({x}, 1) 8/81. (8.24)

Here Lgp is the Fokker-Planck operator of the Fokker-Planck equation which
corresponds to the Langevin equations (3.110). Because of (8.22), W has the
initial condition

W, {x}, t0) = 6(1) Wi({x}) , (8.25)

where W;({x}) is the initial distribution of the variables {x}. In the stationary state
W, is the stationary solution Wy ({x}) of the Fokker-Planck equation, i.e.,
Lgp Wy =0.

The variable I does not appear in any drift or diffusion coefficient. Therefore
we can apply the method discussed in Sect. 8.2. (Because no second derivative
with respect to I occurs, the method simplifies somewhat.) Introducing the
Fourier transform with respect to I

W, ix,L ) = Qn) MWk, x), t)dk, (8.26)

this Fourier transform W now obeys the equation

awsat=Lw 8.27)
with
L =Lgp(x)—ikf(x), ). (8.28)

The initial condition (8.25) for W transforms to

Wik, {x},0) = Wi(lx}) . (8.29)
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If we are interested in expectation values of the form

'Oy = (el w(l, {x}, t)dNxdl
=Qm)[fel@OI Wk, {x}, Hd xdIdk
= [W(-a {x},0)d"x, (8.30)

we need to calculate W only for k¥ = — a. However, if we are interested in the dis-
tribution function of the variable I

w,t) = W, x},Hd™x
=Qn) ([ Wk, {x}, 1) dVxdk (8.31)

we must find the solution of (8.27 — 29) for every k. The result (8.30) was derived
by Lax [1.11c]. He wrote it in the form

("0 = §Mo({xols 1, to) Wilixo) d™xo, (8.32)
where M, is given by
Mo({xos 1,10) = [P(— , {x}, t]{xoh to)d"x . (8.33)

Here, P is the Green’s function of (8.27) with k = — ¢ in (8.28), i.e., it is the
solution of (8.27) with the initial condition

P(a, {x}, to| {xo}s to) = ({x} — {xo)) - (8.34)
Because the solution W can be expressed by

Wi(a, {x}, ) = [P(— a,{x}, t|{xo}, o) WilixoD) d™xo (8.35)
the equivalence of (8.32 — 33) to (8.30) is easily seen.

The quantity M, may be considered as a kind of normalization. Because of

the additional term on the right-hand side of (8.28) the usual normalization is no
longer conserved. We have, for instance,

dM,

P = [LPdx =ia|f(x), HPd x, (8.36)

which reduces for ¢ = £; to

d .
3;10 =iaf({xehto) . 8.37)

t=ty

To solve (8.27, 28) we may apply some of the methods of Chaps. 5 and 6, respec-
tively, for solving the Fokker-Planck equation. Obviously, methods requiring
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that Lyp be brought to an Hermitian form do not work for the non-Hermitian
operator L, but other methods like eigenfunction expansions, numerical integra-
tion and matrix continued-fraction methods may be applied to solve (8.27, 28).

Example

As a rather trivial example we ask for the stationary distribution function W(»)
for the time-averaged velocity (8.19) for a Brownian particle obeying the
Langevin equation (3.1). [It is trivial because the integrated velocity is the
position coordinate x(¢) and thus the problem may be reduced to solving the
Kramers equation for free Brownian motion, i.e., (4.112) with /" (x) = 0.] In this
case, f= v/, and in order not to mix up the wave vector k& with the Boltzmann
constant, the latter is denoted by k. Then I reads

12=yi py el 9 ik (8.38)
ov m dv T

The solution of (8.27) with L given by (8.38) and with the initial distribution

2

m mv
Wy (v) = W, =|/————exp — 8.39
st ) Maxwell 27[ kB T < 2 kBT> ( )

is easily obtained by making a further Fourier transform with respect to v. As
may be checked by insertion, W(k, v, t) is given by

kT 2 [L kT

. (1—e_y(t_’0))—iv}q

Wik,v,t) = —1—jexp -
2n yT m

2
_ (ykT . _kfnT [p(t—to) —1 +e_7(’_’°)]}dq : (8.40)

Here, # is equal to 75+ 7 (8.19).
The integration of W over v leads to

§ Wk, v,to+ 1)dv = exp[— k2g(y 1) kg T/(2m)] (8.41)
with
g(y1t) =2(yt—1+e 79/ (y1)%. (8.42)

Thus we finally obtain the following distribution function for o in the stationary
state

W) = ZL fexpliki —k2g(yt)kpT/(2m)l dk
A

=2
- l/ ___m_exp<___L>, (8.43)
2nkgTg(y7) 2kgTg(yT)
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N ST S RS S S Fig. 8.2. Expression (8.42) as
a function of yt (full line)
and the approximation 2/(y 1)
for yt > 1 (broken line)

o T T T T

The function g(y) is shown in Fig. 8.2. For yt <1 we thus recover the Maxwell
distribution (8.39), whereas for yr>1 we obtain a very sharp distribution
around & = 0 with width ~(y7) V2

8.3 Adiabatic Elimination of Fast Variables

For simplicity we restrict ourselves to two variables x and y. The generalization to
more variables is easy in principle though the explicit calculation may become
quite complicated. If the y variable decays much faster than the x variable, the y
variable is called a fast variable and the x variable a slow variable. We write the
Langevin equations for the two variables in the form

X = he(x, )+ gx(6 ) I'x (8.44)
¥ =yh,(x, )+ r8,( 1) T, (8.45)
where I, and I, are Langevin forces with the correlation functions

(LA T (")) = (O T(t'))y = 26(¢t—t'),
(L) T,(t")>=0.

(8.46)

In (8.45) we introduced a parameter y to indicate the different time scales. We are
looking for solutions of (8.44, 45) in the limit y — oo, consistent with the assump-
tion that y will decay very rapidly to an equilibrium value y.,. We assume that
(8.45) without noise has a stable equilibrium value y.q, which is determined by
hy(x,¥eq) = 0. The equilibrium value yeq generally depends on the slow variable x.
If the noise term in (8.45) is taken into account, we then get an equilibrium distri-
bution for the y variable, which is independent of y because of the factor W
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If one is interested only in a time scale large compared to the decay time (~y ')
of the fast variable y, the process described by (8.44, 45) is then mainly described
by the motion of the slow variable x. Hence we may say that the slow variable
slaves the fast variable [1.14]. The slow variable is the important or relevant
variable, since the fast variable becomes irrelevant for the above time scale be-
cause it can be expressed by the slow variable.

We now want to derive an equation of motion for the distribution function of
the relevant variable x. Such an elimination method was derived by Haken [Ref.
1.14, p. 202ff.]. In our procedure we follow closely the work of Kaneko [8.7].
Our starting point is the Fokker-Planck equation corresponding to (8.44, 45).
This Fokker-Planck equation for the distribution function W(x, y, t) is written in
the form

dW/dt = [L (x,y)+ yL,(,x)1 W, (8.47)

where L, and L, are given by

R) 32
L.(x,y)= - Bx () + WDxx(x,y), (8.48)

3 G}
Ly(.yax) = - y(xay) + _ZDyy(x’y) H (849)
oy oy

and where the drift and diffusion coefficients read (3.95)

D= hx(x’y) + g (x,¥) agx(x)y)/ax s
(8.50)

Dy, = hy(x,y) + g,(x,y) 8g,(x,y)/dy .
— 42 _ 2
Dyy=gx, Dy=g;. (8.51)
We first look for eigenfunctions of the operator L ,(y,x). Here the variable x

appears only as a parameter. We assume that for every parameter x a stationary
solution and discrete eigenvalues and eigenfunctions exist (n = 0),

Ly(.y’x) (pn(yax) = _)-n(x) (p,,(y,x) . (852)

The eigenvalues as well as the eigenfunctions generally depend on the parameter
x. For n =0 we have the stationary solution

P, x) = Wy(,x);  4,=0. (8.53)
The eigenfunctions ¢, and the eigenfunctions ¢, of the adjoint operatorL /, i.e.,

Ly, x) 0, 0,x) = —A,(x) 05 0, %), (8.54)
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may be expressed in terms of the eigenfunctions y,, of the corresponding Sturm-
Liouville problem according to (Sect. 5.4)

(pn(y,X): (pO(y’x) Wn(.Yax)a

01 0,%) = W0, X)) 900,%) = 0,0,/ 963, ) ¢
Obviously then

ps 0, x)=1. (8.56)
The orthonormality and completeness relations read

§0n 0,%) oy, x)dy = [y (7, X) Y (0, X)dy = S (8.57)

L 01020 0,030 = £ w00 050 = 60 -5") (8.58)

The idea of solving (8.52) with x as a parameter is taken from the Born-
Oppenheimer approximation in quantum mechanics. If applied to the H,
molecule, the Born-Oppenheimer approximation consists in first solving the
Schrodinger equation for the two electrons (fast variables), thereby keeping the
variables for the two H nuclei (slow variables) fixed. After making a certain
ansatz for the wave function, one then solves the Schrodinger equation for the
two H nuclei [8.8].

We now expand the distribution function W(x,y, ) into the complete set ¢,
of the operator L ,:

W y,)= T enle0) on(0). (8.59)

We insert this expansion into the Fokker-Planck equation (8.47), multiply the
resulting equation by ¢, and then integrate over the y variable, thus obtaining

[i + wln(x)} Cp= § L, nCm (8.60)
ot m=0
with

L, =10} 0,x)L(x,9) 0,(r,x)dy . (8.61)

The L, ,, are operators with respect to x. In contrast to the ansatz one usually
makes in the Born-Oppenheimer approximation, the infinite set of equations
(8.60) is still exact. For large y, however, we may use the following approxima-
tion procedure. Because we are interested only in the time scale large compared
to the decay constant (y4,) ' of the fast variable, in (8.60) we neglect the time
derivative in the equation with # = 1. We thus have
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C:0= Z Lo’mcm, (8.62)

m=0
€ =[P2,0) " T Ly e
m=0
=2, 'Lyoco+O(G%), nzt. (8.63)
Because the c, for n = 1 are of the order y~! and ¢, is of the order y~°, we have

taken into account only the term with m =0 for the last line of (8.63). By
inserting (8.63) into (8.62) we get

C:0=LOC0, (8.64)

Lo=Loo+y~" ziLo,n[An(x)riLn,wO(y‘z). (8.65)

I should like to mention that (8.65) has the same form as the expression for
energy corrections in second-order perturbation theory in quantum mechanics.

It follows from (8.56, 57, 59) that c, is the integral of W(x,y,t) over the y
variable

colx, 1) = [ W(x,y,t)dy = W(x, 1) . (8.66)

Thus (8.64) is the desired equation of motion for the distribution function of the
relevant variable x. The operator L  has the form

L =—i‘(x)+a—213 (x) (8.67)
0,0 ax X axz XX b -

with drift and diffusion coefficients defined by

Dx(x) = _‘.Dx(x’y) (po(y,x)dy >

B (8.68)

Dxx(x) = §Dxx(xay) (Po()”x)dy ,
i.e., one only has to take the average with respect to the stationary distribution of
the y variable. The term proportional to y ~! is more complicated. It is easy to see
that it starts with a 8/0x term [because of (8.56, 61)], but in general it contains
derivatives with respect to x of the order higher than two. If, however, D, (x,y)
is independent of y, one may show [8.7] that then only derivatives with respect to
x of the order two occur, i.e., L j can be brought to the form of a Fokker-Planck
operator, up to terms of the order y ~2. To solve (8.64) explicitly, the operator L,
should be given analytically. This is the case only if the eigenvalues and eigen-
functions of L ,(y,x) are known analytically and if the matrix elements occurring
in (8.65) can be calculated analytically. An application of this procedure will be
given below.
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8.3.1 Linear Process with Respect to the Fast Variable

We now apply the adiabatic elimination method to the case where the functions
h, depend linearly on y and where g,=|/D,,, g, =}/D,, are constants. Then
y

the Langevin equations (8.44, 45) take the form

x= ho(X)+ h1(x)y+ I/ D, I, (869)
y = —ya(x)[y—a())+1/yV Dy, T, (8.70)

where the correlation function of the Langevin forces is still given by (8.46).
A usual adiabatic elimination procedure consists in neglecting the time
derivative in (8.70). Inserting

¥ = a() + _1/—% r, (8.71)

into (8.69) yields

% = ho(x) + hy (x) 2 (x) + hy (x) 7—% I+ )/ DT (8.72)

According to (3.95) this leads to the following Fokker-Planck equation for
W=W(,t)

W=LW, (8.73)

! 2 2
L= | hgthas Do)y, O (p Do IR PR 2
O0x p a a O0x y a

To apply the elimination procedure discussed previously, we notice that the
operator (8.49) now reduces to

2
L,p,x) = % a@)ly - a(x)] + Dyy:_y2 . (8.75)

Introducing the shifted variable

E=Vax)y/2D,) [y —ax)] (8.76)

and the boson operators (5.62), operator (8.75) may be cast into the form
L,0,x)= —e a(x)b*bet? . (8.752)

The eigenvalues and eigenfunctions ¢, and ¢,/ then read (compare Sect. 5.5.1)
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An(X) = na(x),
0a00, %) = 21‘1’;; S H@ e 8.77)
07 (%) = H,(¢)
The operator L (x,y) now specializes to
L53) = =~ o)+ Ay ()] 4D (8.78)

We first calculate Ly, ,. We easily find using (8.56, 57, 61) and £ = LH, (&) = Lof

LO,n= _—a_lih0§¢ndy+h1§<V2 2 é+a> :l zs(pndy
ox a
2
= [———(h0+h1a)+D aa—} O’n—ai |/ (879)

Because of (8.79), we need to calculate only

2
L1’0=526{——8%|ih0+h1<\/ Zgyy é+a>]+D aax z ody

in order to write down (8.65). Using 2¢%= +Ha+Hy and 2¢' =(a”a)¢
~1/2a/D,,a',2¢" = (@'/a) E — (@' ¥/ (2a*) & - 2a’ a’/V y2a—)/2a/D,,a" (a
prime denotes a derivative with respect to x) we obtain

1 a |/ |/ |/
L =___h '
1,0 2 4 1
—I/Z_"am |/ —+Dxx 2@ (8.80)
Dyy Dyy

Dyy

and thus finally arrive at [8.7]

i) 9°
Ly= ——(hg+ha)+ —D,,
0 Bx(o 10) ox
y L8 (p 8 m homa | Ka
y Ox P4 dx a a

a

_ 2Dxxh1a’ i—D h1 ,/> )

8.81
a Ox a ( )
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If  is independent of x, (8.81) agrees with (8.74). Otherwise the elimination pro-
cedure with y = 0 in the Langevin equation does not lead to the same result in
the terms of the order y~'. If, however, ya is of the order Pla~0(y H]
the adiabiatic elimination procedure in the Langevin equation is correct in the
order y .

For the special case

y=v, h0=0; h1=1; a(X)=1;
- (8.82)
ya=—f/m=—f'; Dyn=0; Dy,=kT/m

system (8.69) is identical to (3.130) describing Brownian motion of particles in
the potential f(x). Up to terms of the order y~1, the operator L  is then identical
to the operator (5.2) of the Smoluchowski equation with p®, p? given by
(5.3, 4). In Chap. 10 we treat the Fokker-Planck or Kramers equation for
Brownian motion in a potential. Especially in Sect. 10.4 we derive the corrections
of Ly up to terms of the order y~3. A solution of this two-variable Fokker-Planck
equation in terms of matrix continued fractions is derived in Sect. 10.3.
If the operators L, ,, (8.61) are such that

L,n=0 for |m-n|lzL, (8.83)
where L is a finite number, system (8.60) may then — after a further expansion
of the expansion coefficients c,(x, t) into a complete set ¢”(x) is made — be cast
into a tridiagonal vector recurrence relation which may also be solved by the
matrix continued-fraction method, as discussed in Chap. 9. For problems where
L is of the form (8.75) and where h.(x,y) is a polynomial in y, (8.83) is valid.

8.3.2 Connection to the Nakajima-Zwanzig Projector Formalism

Quite often the elimination of one or more variables is done with the Nakajima-
Zwanzig projector formalism [1.26, 27, 8.9]. This formalism can of course also
be applied to the present elimination problem, whereby a projection operator Pis
defined by

P..=(]...d»)oo=(fos-..dy) 9o (8.84)

Using the normalization (8.57), it is easy to see that the relation P% = P for a pro-
jection operator holds. Because the system ¢, @,} is complete, the operator 1—P
may be cast in the form

1-P)...=

n

1(5(/):- .dy) ¢, (8.85)

Il 018

In the projector formalism the equation of motion W = L W is split up into two
coupled equations for PW and (1-P) W, i.e., into
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PW=PLPW+PL(1-P)W, (8.86)
(l—P)W=(1—P)LPW+(1—P)L(1—P)W. (8.87)

If we use the expansion (8.59), then (8.86) is identical to (8.60) with n =0,
whereas (8.87) is identical to (8.60) with # = 1. The usual Markov approximation

to the formal solution of (8.87) consists in neglecting the time derivative, as in
(8.63).



9. Solutions of Tridiagonal Recurrence Relations,
Application to Ordinary and Partial Differential
Equations

As shown in the next chapter, the Fokker-Planck equation describing the
Brownian motion in arbitrary potentials, i.e., the Kramers equation, can be cast
into a tridiagonal vector recurrence relation by suitable expansion of the distribu-
tion function. In this chapter we shall investigate the solutions of tridiagonal
vector recurrence relations. As it turns out, the Laplace transform of these
solutions as well as the eigenvalues and eigenfunctions can be obtained in terms
of matrix continued fractions. Therefore, the corresponding solutions of the
Kramers equation can also be given in terms of matrix continued fractions. This
method has the advantage that no detailed balance condition is needed for its
application. This matrix continued-fraction method is especially suitable for
numerical calculations and for some problems it seems to be the most accurate
and fastest method, as will be discussed in other chapters. Besides its advantage
for numerical purposes, the matrix continued-fraction solutions are also very
useful for analytical evaluations. By a proper Taylor series expansion of the
matrix continued fractions we obtain, for instance, in Sect. 10.4 the high-friction
limit solutions of the Kramers equation.

Though in this book tridiagonal recurrence relations are applied mainly to the
Fokker-Planck equation, it should be mentioned that other linear ordinary as
well as partial differential equations and difference equations occurring in
physics and other fields may also be solved by this method. As will be shown, the
one-dimensional Schrodinger equation with an anharmonic potential also leads
to a tridiagonal vector recurrence relation. Also master equations lead to tri-
diagonal scalar or vector recurrence relations. In Sect. 9.1 the forms and the
applications of tridiagonal scalar, and vector recurrence relations are given and
discussed. It is now appropriate to give a short list of some references.

Ordinary Continued Fractions

The standard text books on ordinary continued fractions are those by Perron
[9.1], Wall [9.2], and Jones and Thron [9.3]; for a connection of ordinary con-
tinued fractions with Padé expansions, consult [9.4]. Many functions appearing
in mathematical physics can be expressed by continued fractions [9.1 —3]. Some
applications of ordinary continued fractions to problems in physics may be
found in [9.5], further applications are discussed in connection with: (i) deter-
mination of eigenvalues of the Schrédinger equation for an anharmonic potential
[9.6]; (ii) pocket-calculator determination of eigenvalues of the Schrodinger
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equation [9.7]; (iii) master equations [9.8]; (iv) differential equations with
harmonic coefficients, especially the Mathieu equation [Ref. 5.1, Chaps. 7— 5]
and the Bloch equations [9.9—11]. In some applications [9.5] continued frac-
tions are used to improve the convergence of poorly or only asymptotic con-
vergent Taylor series, similarly to how one uses Padé approximants for
improving poorly convergent Taylor series.

Matrix Continued Fractions

An application of matrix continued fractions to the Schrédinger equation of an
anharmonic oscillator was given in [9.12]. (There, however, the eigenvalues are
not determined by calculating numerically matrix continued fractions.) Also
Padé approximants were generalized to matrices (see the short chapter on matrix
Padé approximants in [9.4]). Allegrini et al. [9.13] used 2 X2 matrix continued
fractions for solving the Bloch equations in connection with saturation effects in
spin—1/2 radio frequency spectroscopy. Vollmer and I have used matrix con-
tinued fractions for solving the stationary Brownian motion problem in periodic
potentials with an external force [9.14, 15], as well as for the time-dependent
Brownian motion problem in periodic potentials [9.16, 17], and we applied them
to the laser Fokker-Planck equation [9.18], the general solution of the Kramers
equation [9.19], and the Boltzmann equation with a BGK collision operator
[9.16]. (In [9.18, 19] the general method presented in Sect. 9.3 for solving vector
recurrence relations was given.) It should be mentioned that an iteration
procedure similar to that for determining the matrix continued fractions has been
applied by Dieterich et al. [9.20] as a trick to solve coupled differential equations
for the Brownian motion problem in periodic potentials. For other applications
of matrix continued fractions to the solution of Fokker-Planck equations, see
[6.19, 20, 9.21]. The stochastic optical Bloch equations, where the Gaussian
noise has a finite coherence time, was also treated by matrix continued-fraction
methods, [9.22, 23] and App. 1. Whereas a lot of convergence theorems exist for
ordinary continued fractions [9.1 — 3], we only know the method in [9.24] where
a mathematical proof of the convergence of matrix continued fractions used in
[9.14—19, 22, 23] was given.

9.1 Applications and Forms of Tridiagonal Recurrence Relations

9.1.1 Scalar Recurrence Relation
A scalar tridiagonal recurrence relation has the form
Qrt_cn—1+ann+Qn+cn+1=O: 9.1

where Q,7, O, are some given constants generally depending on n. We are looking
for solutions of the unknown coefficients c,, which usually depend on time in the
applications. Instead of (9.1) we then consider the time-dependent recurrence
relation
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C.'n = Qn_cn—1+ ann+Q; Cnits (92)

which is a system of tridiagonal coupled differential equations. If the index n is
not restricted (— o < n < o), we speak of a two-sided recurrence relation; if the
coefficients start with #n=0 (0 =n < o, Qg =0), we speak of a one-sided
recurrence relation. Sometimes the index n may be restricted from below and
above (0 < n = N) and we call (9.2) a finite tridiagonal recurrence relation.

Master Equation with Nearest-Neighbor Coupling

A master equation (1.34) with nearest-neighbor coupling is given by

lin =w(n- 1 —n)Pp_1+ w(n+ 1_’n)pn+1
— [wr—>n+1)+wrn->n-1]p,. 9.3)
In (9.3) p, are the probabilities for the nth state (e.g., number of photons in a
cavity mode) and w(n—n+ 1) is the transition probability from state n to n+1. If

p,=0 for n<0, (9.3) has the form of the one-sided tridiagonal recurrence
relation (9.2) with

Qf=wnx1-n)
0, = —[wh-n+1)+wn-n-1)] 9.4)
= —(Qr1+Qn-1)-

As seen from the last expression, the coefficients Q, , Q, are not independent for
. a master equation. Generally, however, the constants Q,, Q, are assumed to be
independent.

Schrodinger Equation for a Discrete Variable

If instead of the continuous variable x the discrete variable n = x/A is used, the
Schrodinger equation for the wave function y(x)

ihy=—(h/2m)y" + V(x)w 9.5)
is transformed into the tridiagonal recurrence relation (9.2) by setting

l//(ﬂA)=C,,, l//”(X) |x=nA:(Cn+1+Cn‘1_2Cn)/A2’

9.6)
0 =i/2mA?, Q,=—ih/(mA*)-iV(na)/h.
The same procedure can also be applied to other differential equations with a
derivative up to second order in x, e.g., a Fokker-Planck equation with one
variable.
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Moment Equation for Laser Intensity

As shown in Sect. 12.1.3, the moments of intensity for a laser near threshold are
given by, see (12.43),

(d/d)KI™y = =200 Yy + 2na{l™y + 4n¥I" 1y . 9.7
Thus, by setting

Cn=<1n>’ (ng()),

9.8)
Q, =4n*, Q,=2na, Q}=-2n,

we again recover the tridiagonal recurrence relation (9.2).

Higher-Order Time Derivatives

In the following we treat equations of the form (9.2) with a first-order time
derivative. With slight modifications the methods of this chapter will, however,
also hold for higher-order time derivatives. For instance, the equation of motion
for a linear chain

mndnzAn+1(qn+1_qn)_)'n(qn_qn—i) (99)

can be treated by this method. The spring constants A, and the masses m,, of the
particles may depend on the lattice site .

9.1.2 Vector Recurrence Relation

A tridiagonal vector recurrence relation with a first-order time derivative is of the
form

éan;cn-1+ann+Q;cn+1- (910)

In (9.10) ¢, is a time-dependent column vector with M components

¢
2
c,=(ch) = i ©.11)
e’
and 0,7, Q, are time-independent M x M matrices with the form for 0,
11 12 1M
H ... 0l
21 2 oM
Q=09 =| T = ? ©9.12)
M1 M2 MM
n n b Qn

and similar forms for @X.
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We want to show that recurrence relations with L nearest-neighbor coupling
can always be reduced to tridiagonal vector recurrence relations, first for L =2
and then give the result for arbitrary L.

We consider the one-sided pentadiagonal recurrence relation (¢,=0 for
n<0)

: -2 -1 0 1 2

Cn=AyChry+Ap Crno1+AnCpt AnCpi1+ AnCnya (9.13)
and write it down for even and odd indices »

Con = Az Az A3+ Al +A3

Con =Ay, Cop_2t+Azy C2p1+ 2nCont+A2,Cop 11 2nC2n+2>

on1 = Azt + A5 L cont AS Al + A2

Con+1=A2p1+1C2n-1 2n+1C2n 2041C2n41 1t A204+1C2n 42 2n+1€2n+3 -

9.19)
If we now introduce the column vectors

Con Con—2 Cins2
Cp= < >’ Cn-1= < § ’ Cny1 = s (9-15)
Contt Con—1 Con+3

we can cast (9.14) into the form (9.10), where the matrices Q;7, Q, are given by

_ A3l Azl AS, Al
0, = < 2 2_2 > ’ Qn = < 2_1 (2) ’
0 A2n+1 A2n+1 A2n+1

9.16)
Q+=<Aa 0 >
n .
A %n +1 A %n +1
Generally the recurrence relation with L nearest-neighbor coupling
. L I
Cn:I ZLAnCn+I ©.17)

is cast into the form of (9.10) by using the column vectors with L components

Crn
¢p= | Lt (9.18)
C.Ln+L—1
and the matrices @, @, with the matrix elements
©N7=ALIGE,
Q)7 =ALq-1-

In (9.19) one has to set A, =0 for |/|> L.

9.19)
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Master Equation with 2 Nearest-Neighbor Coupling

As a first example for (9.13) we consider the master equation with 2 nearest-
neighbor coupling

pn = W(n—2—’n)pn72+ w(n_1—’n)pn—1
+W(n+1-n) Py, 1+ W(n+25m)p,, 5
—[wn-n+2)+wh-n+1)+wh-n-1)

+w(n-n-2)lp,, (9.20)

which for instance describes two photon absorption and emission processes.
Obviously, (9.20) is of the form (9.17), where the constants A/, are immediately
obtained by comparison with (9.17).

Schrodinger Equation for an Anharmonic Potential

The Schrodinger equation for the anharmonic potential

ihy=Hy
m 4?1
H=-— — 4+ _mwix’+alCmo, 2/}‘1]x4
a3 0 [( 0)
= hwob* b+ 1)+ ha(b* +b)* 9.21)

may be reduced to the form (9.17) by expanding the wave function w(x, ¢) into
eigenfunctions |n) of the number operator b* b (b* b|n) = n|n), (n|m) = 6,
b*iny=)n+1|n+1), b|ny = ]/ﬁ |[n—1)[5.3]), i.e.,

w = gocn(t)lm 9.22)

and by inserting (9.22) into (9.21). This yields again (9.17) with (n = 0) M = 4 and

Ayt = —ia)/(n-3)(n-2(n-"1)n,

A= —-ia2@n-1)}/(n-n,

A = —iwy(n+1)—ia3(1+2n+2n? (9.23)

A; = —ia2@2n+3))/(n+1)(n+2),
A} = —ia)/(n+ ) (n+2)(n+3)(n+4),

and where all other Ai@ are zero. The same method can be applied to an
anharmonicity of the form ~x2" [9.12] or more generally to a potential of the
form
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2n
V = Z VvX v 3 I/Zn > 0 ’
v=0
leading to a recurrence relation of length 27 +1.
A Schrodinger equation may also be brought to the form (9.17) not only by
using a discrete variable as in (9.6), but also by using higher-order difference
approximations of the second derivative like (¢, = w(rn4))

w''(x) |x=nA =(—Cp-2+16¢c,_1—30c,+ 16Cn+1_‘cn+2)/(12412) . 9.24)

As shown in Sect. 12.4, the laser Fokker-Planck equation can also be written
in the form (9.17) with M = 2, if the distribution function is expanded into a
suitable set of Laguerre functions. A linear chain with more than nearest-
neighbor coupling leads to an equation of the type (9.17), where the first deriva-
tive is replaced by the second time derivative. Obviously, such an equation can
also be cast into a tridiagonal recurrence relation of the form (9.10), where the
first derivative is replaced by the second time derivative.

Application to Partial Differential Equations with More Variables

As we have seen, some partial differential equations like the Schrodinger equa-
tion and the laser Fokker-Planck equation can be brought to the tridiagonal
vector recurrence relation (9.10). These partial differential equations essentially
depend only on two variables, i.e., x and ¢. More complicated linear partial dif-
ferential equations like a Fokker-Planck equation with an x, y and ¢ variable
may, however, also be cast into the tridiagonal vector recurrence relation. By
expanding the distribution function into a complete set with respect to the y
variable being consistent with the boundary condition (Sect. 6.6.5)

Wp0= T en 0w, 9.25)

one may obtain an equation of the form (9.17), where Al are operators with
respect to x. By using a further expansion into a complete set with respect to the x
variable truncated at g =M

Calx, 1) = gc,‘{ p(x), (9.26)
g=1

(9.17) then becomes a recurrence relation for the column vectors ¢, = (¢/), where
A! are now M x M matrices with matrix elements given by

(A7 = [[pP(O1* Ay 09(x) dx . ©.27)
The complete set w,(y) and ¢?(x) should fulfill the boundary condition for the x

and y variables. The set should be chosen in such a way that expansion (9.25)
leads to (9.17) with a low L. The Kramers equation, where y,(v) are the Hermite
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functions with the velocity v as y variable, is an example where one obtains the
form (9.17) with L =1 (Chap. 10).

For L =2, one may reduce the system to the tridiagonal vector recurrence
relation (9.10) by the same procedure as applied in the beginning of this section.
For L = 2, for instance, the matrices QF, @, are then given by (9.16), where the
Aﬁ, are M x M submatrices. For numerical purposes it is very convenient if the
two complete sets w,,(¥) and ¢9(x) are chosen so that the matrix elements (9.27)
can be calculated analytically.

In Sect. 9.4 it is shown briefly how tridiagonal recurrence relations can be
used to solve linear differential equations with parameters which harmonically
depend on time.

9.2 Solutions of Scalar Recurrence Relations

9.2.1 Stationary Solution

We first discuss the stationary solution of (9.2), i.e., the solution of (9.1). If we
divide (9.1) by ¢, and introduce the ratio

s, = Sn+t (9.28)
Cn

the recurrence relation (9.1) takes the form
On g =
_——_+Qn+Qn Sn_o' . (913)

n—1

Thus, instead of the tridiagonal recurrence relation (9.1) for the coefficients ¢,
we now get a recurrence relation for the ratios S,, where only two adjacent
indices are coupled. We can therefore express S, by S,, [changing n—»>n+1 in
(9.1a)]

S, = — On 1 (9.29)
Qi1+ Qns1Sn+1

or, if we use (9.29) again and again we obtain the following continued fraction
for the ratios S,

S, = Smtt o On1 (9.30)
n T = . .
Cn Opit— On+1Cns2
n+1 T —
Qn+2_ Qn+2Qn+3

Onsz—---
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By iteration of (9.28) we can then express ¢, by ¢g
Cn=Sn_1SnA2...S0C0. (92821)

Sometimes instead of writing the continued fraction with the long fraction
strokes the notation given in [9.1] is used

K= 4

a
b1+ 2

a
by + 3

by+t...

=4, @l Bl 9.31)
by |by |bs

A continued fraction may have either a finite or an infinite number of terms. An
infinite continued fraction may be approximated by a finite continued fraction
where we stop after the Nth term:

a ay an
Ky = + +...+ . (9.32
oy s by )

We call Ky the Nth approximant of the infinite continued fraction K. The
infinite continued fraction (9.31) is said to be convergent if

K= limKy ©.33)
Noo

exists. The Nth approximant of Sy in (9.30) may be obtained if we truncate the
system (9.1) after the Nth term, i.e., if we omit the equations for n = N and if we
put

CN+1=CN+2="'=0' (934)
We then have the recurrence relation (9.29) for n = N—1 with
Sy=0. (9.35)

For a theory of continued fractions and especially for various convergence
theorems the reader should consult [9.1 —3].

Ambiguity of the Solution of the Tridiagonal Recurrence Relation and
Uniqueness of the Continued-Fraction Solution

Let us consider the recurrence relation (9.1) with Qy = Qg = 0, see (9.8) for an
example. Then the recurrence relation (9.1) has two solutions whereas the infinite
continued fraction — assuming it converges — leads to only one solution. This is
seen as follows. Starting with the second equation of (9.1), both coefficients ¢
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and ¢, can be chosen arbitrarily and all other coefficients ¢, with n = 2 follow by
upiteration according to (9.1). The continued fraction (9.30), however, gives a
unique S, and thus ¢y and ¢; = Sy¢g are no longer independent. To gain some
insight into this phenomenon we first treat the case where QF and Q, are
independent of n for n = 1. Then the S, will also be independent of n and we
obtain from (9.1a) for S the quadratic equation

Q*S*+QS+Q™ =0
with the two solutions

§=x=02097'(-0+)/0*-40"0"). 9.36)

The infinite continued fraction (9.30) becomes the periodic continued fraction

se-- 2l 0or| otor| (9.37)
le [ o | o

If we assume that Q*, Q are real and that two different real roots of (9.36) exist,
it can be proved [9.1] that the continued fraction (9.37) converges to that solution
where |x, |is a minimum,

2

Se=x1 il |x|<|x]
or (9.38)
Se=xy if x> |x2] .

(If there are two different complex roots the continued fraction (9.37) cannot
converge.) For instance, if we have Q™ =2; 0% =1, O = 3 we have the two solu-
tions x; = —1; x, = — 2, whereas the continued fraction (9.37) leads to only one
solution with the value

_%I_él_él_...zq

as may be easily checked on a programmable pocket calculator.
The coefficients ¢, may be expressed by ¢, according to

c,=8lc. 9.39)

We see that the continued fraction singles out that solution where, for increasing
n, the absolute amount of the coefficients either decreases in the fastest way for
|S.| <1 or increases in the slowest way for |S.|> 1.

We may also look at this selection process from a different point of view.
Because of the linearity of (9.1) the general solution of (9.1) may be written as

Cp=[Ax{+(1-A)xi]co, (9.40)



206 9. Solutions of Tridiagonal Recurrence Relations

where A is an arbitrary constant. The solution with the special value ¢y, 1 =0
indicated by the index N has the form

N+1,.n N+1,_n
T M S WP 2PN 9.41)
xé\/+1_x{v+1

Cn,N

If we assume that two different real values x; and x, exist and if we take the limit
N— oo we get exactly the solution (9.39).

Another very instructive example is the recurrence relation (9.7) for the
moments of laser intensity. The stationary solution obviously follows from the
one-sided recurrence relation

C0=1
(9.42)
2nc,_1+ac,—c, =0 for nz=1.

With the help of (9.30) it is an easy matter to obtain an expression for the first
moment

Iy =c¢1=8pco=So= —F+é+r6j+...
a a a
2 2 2
o), Y, 6, .49

and for all higher moments

A" Yy =S I"=58,8,_1...So
(9.44)
2 2
a2(n+1)/a |+ 2(n+2)/a |+ .

I

S, = —

On the other hand, ¢, can be calculated exactly by Laplace’s method [9.25]. We
do not, however, need this method here because we know the stationary distribu-
tion of the laser intensity, Sect. 12.2. A solution of (9.42) is given by, see (12.46,
48),

cP(a) = F,(a)/Fy(a) (9.45)
with
T n 1 2 al
F,(a)= (I exp<——1 +—> dr. 9.46)
0 4 2

It is easily checked by partial integration that (9.45) fulfills (9.42). As clearly
seen, another independent solution ¢ is obtained by

@) =(—1)"c(-a). (9.47)
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Fig. 9.1. Solution cf“ (upper curve), solution

_- sy cf? (lower curve) and the continued-fraction
- solution (9.43) (solid line) as a function of
T 3 a the parameter a
- 3 /—____
e i

Though this solution must be rejected on physical grounds (because the intensity
moments cannot be negative) it is nevertheless a possible solution of (9.42).

Therefore a more general solution (probably the complete solution) of (9.42)
has the form

cn(@)=AcP@)+(1-A)cP(a), (9.48)
where again A is an arbitrary constant. The solutions c{’(a) and ¢{? (@) are given
in Fig. 9.1. For positive a solution ¢ increases with increasing n more rapidly

than solution cﬁ,z). This may be shown by first expressing F,(a) by the parabolic
cylinder functions [9.26]

Fo(@)=n! 20+02e@3p _(—a/)/2) (9.49)

and then using the asymptotic expressions for large n and bounded a, yielding
from [Ref. 9.26, last equation of Sect. 8.1.6]

F,(a)=)/2n exp{a¥/8 + Ln(lnn+In2—1)+a}/n/2}(1 +O(1/)/n)). (9.50)

Thus the ratio of c¢{”(a) and ¢?(a) is given for large n by

D@ |_ Fl-a)
n = . 9.51
T |” R S0V e

Thus, ¢V increases for a > 0 with increasing n faster than ¢, whereas for @ < 0
the reverse is true. The continued fraction (9.43) agrees with c}l)(a) fora < 0and
with c§2)(a) for @ >0 (Fig. 9.1). [At a = 0 the continued fraction (9.43) does not
exist.] This may be shown numerically by evaluating (9.43) on a programmable
pocket calculator. It may be proved analytically as follows: by using (16) of
[Ref. 9.1, Vol. II, Sect. 20] we obtain (after making the substitution /—a = 2¢
and puttinga = —2¢) fora <0

Iy = 2 +a= Fi(@) =
Fola) Fola)
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Had we chosen the coefficients
é,=c,/n! (9.52)
instead of the coefficients c,, the recurrence relation (9.42) would read
28,_1+aé,—(n+1)¢é,, (=0 (9.42a)

and both solutions ¢ and ¢® would tend to zero for n—oo. Solution & then
decreases less rapidly than &% for @ > 0 and vice versa for a <0.

Thus, we see that also in this more complicated example the continued-
fraction method singles out that solution for which |c,|increases with increasing
7 in the slowest way or decreases with increasing n in the fastest way. This seems
to be a general feature of the continued-fraction method. The explanation runs
as follows. The Nth approximant Sy(V) = ¢;/¢, could also be obtained by
truncating the system (9.2) after the Nth term, as discussed in the beginning of
this section. If we then start with a value cy and calculate ¢, for low n iteratively,
only that solution will survive in the limit of large N, where the |c,|grow with
decreasing 7 in the fastest way (or decrease with decreasing # in the slowest way).
If we perform the reverse iteration, i.e., if we start with the two coefficients ¢,
and ¢, = Sy(0) ¢y and calculate coefficients with larger n, |c,|must then decrease
with increasing 7z in the fastest way (or increase with increasing n in the slowest
way). This solution is called a minimal solution of the recurrence relation (9.1). If
the minimal solution is denoted by ¢™" and another solution by c,, we then have
[9.3] lim cM%/¢, = 0.

Ag E;plained in [9.3] the upiteration of the recurrence relation (9.1) is numer-
ically unstable for a minimal solution whereas the upiteration according to
(9.28 a) is stable.

If the coefficients c, are the expansion coefficients of a function W into a
complete set y,(x), i.e.,

Wx) = %I CnWn(X) (9.53)

this would mean that the continued-fraction method singles out that solution
where expansion (9.53) converges in the best possible way. If for instance W(x) is
determined by a differential equation (which may lead to the recurrence relations
(9.1) for a proper chosen set y,(x)) one is usually looking for a solution where
the expansion converges in the best possible way. Thus, the continued-fraction
method automatically leads to this desired solution. If, however, the coefficients
are some other quantities like the moments in the example just discussed, one has
to check very carefully whether the solution obtained by the continued-fraction
method is the desired one.

Approximate Determination of Sy

If the coefficients Q,, O are slowly dependent on n for large n so that

0, =~ Qni1, OF = Q4 for large n the ratio Sy_1 may be approximated by Sy
for large N. We thus obtain from (9.1a) the quadratic equation
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QX% S+ OnSn+Qn =0.

For S, we then get the roots (9.36) where Q*, Q and S has to be replaced by Qx,
Qw and Sy respectively. As explained before we must take that root where |xN1 |
is smallest, i.e. we use

Sy =xy1 if [xa] < |xnz|

Sy =xn2  if x> xa2] (9.35a)
fo(2Q;)*‘(—QNil/Q,%—4Q,;Q;)

instead of (9.35) as the starting value for obtaining S, with n < N—1 according to
(9.29). For the example (9.42), for instance, with ¢ < 0 we have

Sy=|/2N+a*/4 +a/2.

For a= —1 only N = 150 is needed to obtain (/) = S, accurate to 9 digits with
the above starting value whereas with the starting value Sy = 0 N= 300 must be
used to obtain the same accuracy.

By using

SN—l = SN—dSN/dN‘I' .o
more accurate solutions of (9.1a) may be obtained for large N. (In the above
example one can derive an expansion of Sy in powers of (2N) ~ /2 which further

reduces the number N of iterations, which are necessary to achieve the same
accuracy.)

9.2.2 Initial Value Problem

To find the solution of the one-sided recurrence relation (9.2) with the initial
value c¢,,(0), we first observe that the solution c,(f) can be expressed by

c,(t) = E Gn m(t) cm(0) , (9.54)

m=0

where the Green’s function G, ,,(?) is a solution of

m= Qn_ Gn—i,m+QnGn,m+Q;Gn+1,m (955)
with the initial condition

Gn,m(o) = Opm - (9.56)
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Next we make a Laplace transform
Grm() = [€77Gp, m(t)dr (9.57)
0

and obtain from (9.55) the following recurrence relation for the Laplace-trans-
formed Green’s function G, ,,(s)

Qn_ G~n—1,m+QAnGn,m+Q; én+1,m= _Jnm’ (9-58)

where Q,, is given by
0,=0u(s) = 0,-s. (9.59)

If we disregard the inhomogeneity in (9.58), it is the same as (9.1), whose solu-
tions we just discussed. We therefore proceed now in a similar manner. If we
truncate the infinite system after the N'th term, i.e., if we neglect the equations
(9.58) for n = N+1 and if we put

GN+1,m=G~N+2,m=...=O forall m=0, (9.60)

system (9.58) reads explicitly (Q, = 0)

QOGO,m +QJ Gl,m =0
Qi_ GO,m +Q16~1,m +Q1+G~2,m =0

Qr;—iém—Z,m+Qm—1G~m—1,m+Q;—1G~m,m =0
Qrzém—i,m +QAmG-vm,m +Q;G~m+1,m = -1 (9.61)

Qr;+1Gm,m + Qm+1Gm+1,m+Qr:r1+1Gm+2,m =0

On-1Gn_2.m +QAN716~N—1,m+Ql_\$—1G~N,m =0

Q]:’GN—l,m +QANG"N,m =0.

We now introduce the two ratios

St(s)= &ﬂ S, (s) = Cntm 9.62)

n,m n,m

According to the last equation in (9.61) we may express G~N, m 1N terms of
GN—l m
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e 06 . %
GNm=8N-16)Gn_1,m, Sp-1ls) = — =2, (9.63)
N

Inserting this G~N, m into the second-last equation we may express G _ 1,m 1N terms
of GN— 2,m

G~N—1,m = S‘]_\F’-ZGN—Z,m s SHoas) = — QN_i —. (9.64)
A On-1Qn

On-1— On

We proceed in this way till we reach the equation with the inhomogeneity —1:

Gm+1,m= ~r;Gmm,m
5 Om 1’ Q$+1Qrﬁ+2|
Si(s) =— =mHd i -
" IQm+1 | Qm+2
Q%208 Q13—1Q1\7|. (9.65)
On-1 | O

If we let N tend to infinity we obtain the infinite continued fraction

3 — Omi1 l Q;+1Qr:1+2|
Stis)=— - —. 9.66
& lQm+1_S l Omiz2—Ss )

According to the first equation in (9.61) we may express GO,m in terms of Gi,m

+
0

9.67)

G~O,m:‘§1_(s)G~1,m’ ‘S:‘iA(S)z -
0

Inserting this G~0, m 10 the second equation we may express 6‘1, m in terms of Gz,m

G~1,m=‘§2_(s)G~2,m’ S‘Z_(S)z _—L‘F (9673)
0O, - Q1AQ0
Qo

and so on, till we reach the equation with the inhomogeneity — 1

Gm—l,m =3y Gm,m

_ Oni | QneiQao|
IQm—i_S I Qm—Z_S

_ 90| 070 (9.68)
|0i-s [ Qp-s

S5
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For the one-sided recurrence relation (9.55) S,, (s) is a finite continued fraction.
For a two-sided recurrence relation, (9.68) does not stop at the last term but
continues to negative indices, i.e., S,, will then also be an infinite continued
fraction. Finally, from the equation with the inhomogeneity —1 we have

QS+ Ot 0 S7) G = —1
or if we introduce the abbreviation

E(s) = 0 Sm(8)+ Qi S 5) (9.69)
and if we observe (9.59) we have

Q=5+ Kn()] Gpm=—1. (9.70)
By this equation G~m,m can be calculated

Cum(8) = 5= Om—K ()] . 9.71)
Thus the essential function is

K, (s) = Rn(s)+K 5 (), 9.72)

where K % (s) are given by the infinite and finite continued fractions

Om Q;Hil_ Qr;r1+1Qr;+£|_.“ , for m=0 (9.73)
lQm+1_S | Omi2—S

Ro(s)= — OmOm-1|_ Om-1Qm—2 -
" mei—s meZ—S
0 0f| 01 0d| for m=1
_ _ , > (9.74
[0-s |Qo-s o )

Ky (s)=0.

Ri)= -

The other Laplace-transformed Green’s function then follows by iteration
according to (9.65, 68) from G,, ,(s)

Gn,m(s) = (7n,m(s) ém,m(s) » (9.75)
Upom(s) = Sp—1(5) Si_2(5)..- Sts) for nzm+1, (9.76)
Upm(s) =1, ©.77)

Un,m(s)=§;+1(s)§;+2(s)...§,;(s) for O=n=m-1. (9.78)
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Thus the Laplace transform of Green’s function and therefore also the Laplace
transform of the general initial value problem is expressed in terms of continued
fractions. [We have tacitly assumed that only the minimal solutions of (9.61) are
of interest.]

Equation (9.70) is the Laplace transform of the integrodifferential equation

Gom(®) = QG ml0) + [ Kt —7) Gy m(2) 7 9.79)
0

with the initial condition (9.56). The memory kernel K,,(¢) is the inverse Laplace
transform of K, (s). Thus the exact elimination of the functions G, (t) with
n * m in the infinite system (9.55) of coupled differential equations is completely
taken into account by the memory function K,,(¢). Because of (9.75) the other
Green’s functions are expressed by the convolution (n + m)

Gy 1) = {Upm(t— 1) G m(®)dlT, (9.80)
0

where U, ,,(f) is the inverse Laplace transform of Un,m(s). A solution of the
general initial value problem is then given by (9.54).

A somewhat different method to solve the initial value problem of (9.2)
would be the following. Making the Laplace transform

én(s) = Tc,,(t) e sdt,
0

we obtain the inhomogeneous recurrence relation (9, = Q,—s)
Qn_ En—1+QAnEn+Qn+ 5n+1 = _cn(o) . (981)

If we truncate the system after the Nth term (¢y, 1= ¢vy2= ... = 0 and omit the
equations with n = N+ 1) we obtain by inserting the ‘ansatz’

Chi1= ;5n+&n+1 for n;O, 50=60 (982)

the following recursions

Si-1(s) = - 2
On

inGs) = - N0 (9.83)
On

SHs) =-—— Q”+“~+ for 0=ns=N-2
Qn+1+Qn+ISn+1(S)

.
dn(s) ——M for O§n§N_1.

Ont QO S5 (s)
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Thus all ¢, with 7 = 1 can then be obtained by iteration. Finally ¢, follows from
(9.81) with n =0, i.e. from

Cols) = ap(s) . (9.84)

This iteration procedure may be better suited than (9.75 — 78) for those cases for
which the continued fraction (9.74) becomes numerically unstable for large m.

Taylor Expansion Method

The foregoing continued-fraction method should not be mixed up with the fol-
lowing expansion method in which a continued fraction may be used to improve
convergence. If we insert the ‘ansatz’

()= ¥ ap t"/v!
v=0 (9.85)
ano =Cn(0)

into (9.81) or if we insert its Laplace transform (or its one-sided Fourier trans-
form s = iw)

En(s) = zoa,,,vs*‘”” (9.85a)

into (9.2), we can determine the expansion coefficients a,, , of the Taylor series by
iteration according to (v = 0)

an,v+1 = Qn_ an‘i,v+Qnan,v+Q;an+1,v' (986)

(This method is, of course, not restricted to a tridiagonal recurrence relation.)

Usually the convergence of the above Taylor series is not very good especially
for large ¢ or small s; the series may even converge only asymptotically for -0
ors— o, i.e., diverge for every ¢ > 0 or finite s. The convergence may be improv-
ed or the divergent series may become convergent when Padé approximants or
continued fractions, which are a special form of Padé approximants, are used
[9.4]. Depending on the form of these continued fractions they may or may not
agree with (9.65, 68). In any case the advantage of (9.65, 68) is that (9.65, 68) are
directly given in terms of Q,F, Q,, whereas the coefficients of the continued frac-
tions (or more generally the coefficients of Padé approximants) for the Taylor
series (9.85, 85a) are expressed in a more complicated way by determinants or
recurrence relations [9.1 —4].

9.2.3 Eigenvalue Problem

Because OF and Q,, in (9.2) do not depend on time, we can make the separation
‘ansatz’
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c,(t) = é,e M 9.87)
and obtain the homogeneous recurrence relation

Qn Cp 1+ (Qp+A)E,+Qy 6y 1 =0. (9.88)

Because (9.88) is a homogeneous linear equation, the following infinite deter-
minant must be zero

Q+i Qf
o Q1_+ Aol =0. (9.89)
0 O+4 OF

Determinants of this form, where all elements are zero except the diagonal
elements and the elements in the two adjacent lines, are called continuants [Ref.
2.8, Chap. 13]. Here we do not need the theory of continuants. To find an
equation for the eigenvalues we eliminate all coefficients ¢, with n =+ m by the
same method used for G, ,, in (9.61). Instead of (9.70) we now obtain (1 = —s)

[Qm+ A+ Km(= 1)1 E,=0. (9.90)
From this equation we immediately get the equation
OmtA+K,(-1)=0, (9.91)

from which the eigenvalues A can be calculated. Obviously, the Green’s function
G, m(s) (9.71) has poles at s = — 4. Usually the index m =0 is arbitrary. For
those eigenvalues which are close to — Q,, it is, however, advisable to use the nth
equation. If one or more of the coefficients are zero (¢, = 0), we cannot use (9.91)
form =1

The other coefficients then follow from é,, by [compare (9.75)]

en=Uppm(=1)&p. (9.92)

If the stationary solution of (9.2) exists, one eigenvalue 1 must be zero. For
Qo= 0 only K exists and we must have K,(0) = 0. The other coefficients then
follow from (9.92) with m = 0, which agrees with (9.28 a).

Example

As an example we look for the eigenvalues of the intensity moments equation
(9.7). Because in this case ¢, must be zero for A + 0, we cannot use (9.91) for
m=0. For m=1, (9.91) then reads

20+ A+ K(-1)=0, (9.93)
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where K{(— 1) is given by, see (9.8, 72, 73),
Ki(-1) =K (=2)

2.4.22 |+ 4'4'32J+ 6-4-42|+
[2-2-a+4 [2-3-a+2 [2-4-a+2

6 | 8

_,. 4 |
=2 a+ /4 +fa+,1/6 +|a+,1/8 T 659

Continued fractions of the above form can easily be evaluated on a pro-
grammable pocket calculator. The roots of (9.93) can then be obtained by some
root-finding technique, for example by a regula falsi method. Thus, for this
example one can calculate with a programmable pocket calculator the eigen-
values below threshold a <0, otherwise obtained only by more elaborate
methods. Above threshold (¢ >0), however, the method is not applicable
because the continued-fraction method singles out an unphysical solution, as was
already discussed for the stationary problem in Sect. 9.2.1. If ¢, are expansion
coefficients of some function into a complete set, we may truncate system (9.2) at
large N, leading to the Nth approximant of the continued-fraction. If we then
take the limit N— oo we can always use (9.91) to determine the eigenvalues. (For
an application of this method to the calculation of the eigenvalues of the
Schrédinger equation with discrete variables (9.6), see [9.7].)

9.3 Solutions of Vector Recurrence Relations

We now discuss the solution of the vector recurrence relation (9.10). As will
become evident, we can also apply the methods used for the scalar recurrence
relation (9.2) for (9.10). The decisive difference will be, however, that for non-
commutative matrices Q;F, Q,, the order of multiplications and inversions will be
essential. The multiplications and inversions now become matrix multiplications
and matrix inversions. Thus the ordinary continued fractions of (9.30) will now
become matrix continued fractions.

If, for the moment, we neglect the first (n = 0) equation in (9.10) and if we
put ¢, = 0, the tridiagonal vector recurrence relation (9.10) has 2M independent
solutions. We may choose for instance the two vectors ¢, and ¢y arbitrarily (2M
arbitrary constants) and obtain all ¢, with n =2 by upiteration of (9.10). The
matrix continued-fraction solution of (9.10) leads — if it converges — to a matrix
S¢ which connects ¢; and ¢y, i.e. ¢; = §¢ ¢g and thus both ¢4 and ¢, can no longer
be chosen arbitrarily. We may choose an arbitrary ¢, still leading to M arbitrary
constants. In the examples we discuss in the following chapters the first equation
of (9.10) together with some normalization or proper initial conditions then
determine all these M coefficients and thus give a unique solution. If matrix con-
tinued fractions are not used M arbitrary constants cannot be determined.
Similar to the scalar case, the matrix continued-fraction method seems to single
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out that solution where the absolute amount of the coefficients ¢£ decreases with
increasing n in the fastest way or increases with increasing 7 in the slowest way. If
the ¢ are the expansion coefficients of some function into two complete sets, the
matrix continued-fraction solution is just that solution which converges in the
best possible way, which usually is the desired solution.

Because the stationary solution is the special eigenvalue problem with eigen-
value 1 = 0, we do not treat the stationary solution separately as in Sect. 9.2.1.

9.3.1 Initial Value Problem

We proceed here in the same way as in Sect. 9.2.2. The general solution of (9.10)
is expressed by the Green’s function matrix G, ,(f), i.e.,

cp(t) = EOGn,m(t) cn(0), (9.95)
m=
with the initial value
Grm0) =10,y . (9.96)

Here I is the unit matrix. After making the Laplace transform

oo

Gom(s) = 679G, n(t)dt, 9.97)

f=1

we obtain as a sufficient condition for the solution of (9.10)

Qn_ G~n—1,m + Qnén,m + Q; G~n+1,m = _Ianm (998)
with
0,()=Q,—sI. (9.99)

To solve (9.98) we introduce two matrices 5,? which connect G~n,m with G~ni1, m

Gritm=5:Gp . (9.100)

We may now use the same elimination procedure as in Sect. 9.2.2. To shorten the
derivation, we proceed as follows. Neglecting for the moment the inhomo-
geneous term, we have either

076G it 0,+0F8SHG, =0 (9.101)
or

(0, 85;+0,)G, 07 Gt m=0. (9.102)
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By multiplying both equations with the inverse of the matrix in the parenthesis
and by comparing the results with (9.100), we immediately obtain

$ = _(Qn+QnS )— Qn

or, if we change the index » and insert (9.99)

S = (T = Qa1 = Qi1 Sazt) Q- (9.103)
For the upper sign in (9.103) we get by iteration the infinite continued fraction
Sy =6I-0 1= 071 I= Q2= O 2(sT- Qi 3—..) !
X013 Qi) Qo - (9.104)

For a one-sided vector recurrence relation the iteration of (9.103) for the lower
sign leads to the finite continued fraction (n = 3)

Sy, =0

St =@6I-Q0)7'Qf

3 = (sT- 01— 01 (sI-0)~'0) ' 0F
n =60y 1= Qi (ST—...= Q7 5ST-Q0) '@ ..) '@ '0, .

(9.105)

If the inhomogeneous term —17 in (9.98) is taken into account, the index » in
(9.101) must be restricted to n=m+1 and in (9.102) to n=m —1. Because of the
change of index in (9.103), the index # in (9.104) must be restricted to n=m and
in (9.105) to n=m. Con51der1ng the equation with n=m of (9.98), we may
express G, 1,m by S Gm m and Gm+1 n by 3 Gm m» thus obtaining

(Q;S‘; +QAm+Q;1§$) G~m,m =-I.

Introducing

Ky (s) = Ky (5) + K3 (5) (9.106)
with

Ky (s)=0xSx (9.107)
we have

[Qn—ST+K ()] Gp= —1. (9.108)

Thus Gm, m IS given by

G~m,m(s) = [SI_ Qm_K;m(s)] - . (9'109)
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The other G,,’ = follow by iteration of (9.100)
Gu(S) = Upm(8) G, m(5) ; (9.110)
Tum(®) =8 1()S7_2(5)...85() for nzm+1

T m(8) =1 9.111)

Upm(s) = 8p1(5)S542(8)...Sp(s)  for Osnsm-1.
In particular, we have for m =0
Ko(s) = K¢ (s) = Q5 S

=07 (sI-0,- 01 (sI-0Q,— 05 (sI-03—...)"'0:) '05) 7 '0r .
9.112)

If we write the matrix inversions by fraction lines, (9.112) takes the form

~ I _
Ko(s) = Q¢ 7 Qr.
sI-Q- 07 7 0
—O0.—07F -
sI Q2 Qz SI—-Q3—... Q3 (9_112a)
Equation (9.108) is the Laplace transform of
m m(t) = 2.6 m, m() + SKm(t 7) Gm m(T)dT (9.113)

with the initial condition (9.96). The memory matrix-kernel K ,(¢) is the inverse
Laplace transform of K m(s). The other solutions G, ,,(¢) then follow by convolu-
tions with the inverse Laplace transform of U ,,’m(s) according to (9.110).

It should be noted that for a numerical evaluation of G, one does not need
(9.110, 111) for all a. It is necessary to determine only two G, ,, with adjacent
indices n by (9.110, 111). The other G,, » may then be determmed by iteration
according to (9.98). By this iteration procedure, however, one may encounter
numerical instabilities. If for instance we have obtained G ¢ from (9.109) and
G, from (9.110, 111) the other G, ,may then be obtained by iteration according
to (9.98). As already mentioned in [9.3] for the scalar recurrence relation (9.1)
this upiteration is numerically unstable if G, , is a minimal solution of the recur-
rence relation. No such instability seems to occur if G, o with n=1 are deter-
mined by (9.110, 111).

As in Sect. 9.2.2 for the scalar case, it is also possible to find the general
solution of (9.10) by the following iteration. Making the ‘ansatz’ (nz 0, ¢,=0
forn=N+1)

€n+1=§: ~n+a~n+1’ 9.114)

Co

I
ol

’
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for the Laplace transform of the solution ¢,(¢) of (9.10) with the initial value
¢,(0), we obtain in analogy to (9.83)

Sk-1 =IsT-Qn""Ox

dn(s) = [sT-Qn] " "en(0)

§H(s) =[sI-Qpy1— Qi1Shr1@ Qs for 0sn=N-2
Gy(s) =IsT-Q,— 07 S () '[c,(0)+Qf dpyy] for 0=n=N-1.

(9.115)

This iteration procedure may be better suited than (9.110, 111) for those cases for
which the continued fraction (9.105) becomes unstable for large .

Taylor Expansion Method

In complete analogy to the scalar case it is also possible to solve (9.10) by a
Taylor series

iy = Za” t/v! .

The coefficients are found by iteration according to
an 1= Z [(Q@,)ai_1,,+(@)af ,+ (@) ad, 1],
starting with
apo=cp0).

The convergence of the above Taylor series may again be improved by an
ordinary continued fraction. If the matrices @, ,Q, do not commute, these
ordinary continued fractions have nothing to do with the foregoing matrix
continued fractions (9.104, 105).

9.3.2 Eigenvalue Problem

For the determination of the eigenvalues of (9.10), we may proceed in a similar
way as in Sect. 9.2.3 for the scalar case. By inserting the separation ‘ansatz’

e (t)=¢&,e (9.116)
into (9.10) we get the homogeneous recurrence relation

Q; 1+ (Qp+ADE+ 0,8y =0. 6.117)
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With the exception of the equation n = m, (9.117) agrees with (9.98) (s = —1).
We may therefore eliminate all ¢,, for n+ m by the same procedure used in
Sect. 9.3.1. For the equation with » = m we then have

[Qm+ AT+ K(— AN E,=0. (9.118)

With the exception of the inhomogeneous term in (9.108) equation (9.118) agrees
with (9.108). Because (9.118) is a homogeneous equation the determinant

D, (1) =Det[Q,+ AT+ K, ,(—)]=0 (9.119)

must be zero. This is the desired equation for determining the eigenvalues.
Because of (9.109), the determinant of the Green’s function matrix G,, ,(s) has
poles at s = —A. The eigenvectors ¢, then follow from the eigenvectors ¢, of
(9.118) by the relation

€= 0n,m(_/l)ém’ (9.120)

see (9.110). If the continued fractions (9.104, 105) exist any of the equations
(9.119) for m=0,1,2,... may be used to calculate the eigenvalues. For those
eigenvalues where K w(—A4) is small compared to Q,, it is advisable to use D,,(41).

Concerning the calculation of eigenvalues the following remark is pertinent.
To calculate the infinite continued fraction K;; we have to approximate it by
some approximant of finite order, e.g., by the Nth approximant. As discussed in
Sect. 9.2.1, this is equivalent to truncating the recurrence relation (9.117) at the
index N. Equation (9.117) is then equivalent to a linear system for the (N+ 1)M
coefficients ¢ and the eigenvalue problem would be equivalent to diagonalizing
an (N+ 1)M X (N+ 1) M matrix. The matrix continued-fraction method requires
the calculation of N inversions and multiplications of M x M matrices, which is,
especially for large N, much easier to perform than diagonalizing the
(N+ 1)M x (N+ 1) M matrix. To obtain the eigenvalues by the matrix continued-
fraction method, the roots of (9.119) have to be found with some root-finding
technique.

As already mentioned, the stationary solution does not require any special
treatment. Here, the determinant (9.119) must be zero for A = 0. The vector ¢,
then follows from (9.118) and the other &, from (9.120). Vector ¢é,, and therefore
also vectors ¢, contain a multiplicative arbitrary constant, which must be deter-
mined by the normalization condition. If Det @, = 0 the matrix continued frac-
tions (9.105) do not exist and we must use (9.119) for m = 0.

Generalizations

(i) The continued fractions were written down for a one-sided tridiagonal vector
recurrence relation. For a two-sided tridiagonal vector recurrence relation similar
expressions are valid. The only difference will be that the continued fractions S’ n
and K, will not terminate at n = 1 but will extend to # equal to minus infinity
and therefore will also become infinite continued fractions.
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(i) A more general tridiagonal recurrence relation has the form
Ar:dn—1+Anén +A; (':n+1 = Qr: Ch1+t ann+ Q: Crntt (9-121)

An equation of this form, for instance, may be obtained from a two-variable
Fokker-Planck equation, if the drift and diffusion coefficients are rational
functions, Sect. 6.6.6. To calculate the eigenvalues, (9.117) has to be replaced by

(Qn‘ +/1An_)én—1+(Qn+ /lAn)én‘i'(QrT + A’A;) én+1 =0 > (9122)

which may be solved similarly to (9.117) by matrix continued fractions. The
initial value problem is now more complicated because the inhomogeneity
Ay, A,occurs for n =m¥1 and n = min (9.98). Of course, Q. and Qn in (9.98)
must be replaced by QF —sAZ and Q,—sA, in this case. The elimination of
Gn:;m with /=2 can be done as in Sect. 9.3.1. Only the remaining three
equations for G, ., and G~,,,m must then be solved.

(iii) As mentioned in the introduction, higher derivatives may also be treated
in the same way, i.e., one may solve the tridiagonal recurrence relation

L
Y [A;Pd/dtY e, +APd/dt) e, + A D(d/dy e, 1=0 (9.123)
=0

by the procedures given in this chapter.

9.4 Ordinary and Partial Differential Equations with Multiplicative
Harmonic Time-Dependent Parameters

We now discuss briefly the application of ordinary and matrix continued frac-
tions to differential equations, where some multiplicative parameters depend
harmonically on time. In Sect. 9.4.1 we show the application to ordinary dif-
ferential equations, especially to the Mathieu and the Bloch equations, and in
Sect. 9.4.2 to partial differential equations, especially to the one-variable
Fokker-Planck equation.

9.4.1 Ordinary Differential Equations

Mathieu Equation

One of the simplest equations with a multiplicative harmonic time-dependent
parameter is the Mathieu equation [Ref. 5.1, Chap. 7—5]. It reads in normalized
variables

d*x/d? +(R-2qcos27)x=0. (9.124)
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Because of Floquet’s theorem [5.1], a solution of (9.124) can be written in the
form

x(r) =eu (), ult+mn)=u,1), (9.125)
where u,, is a periodic function with the same period 7 as the time-dependent
parameter cos2 7 in (9.124). If the characteristic exponent u is purely imaginary,

solution (9.125) is stable; for Re{u}>0 it will become unstable. Because of the
periodicity of u, we can make the Fourier expansion

= — 0

u ()= ¥ cpei2nt. (9.126)
n

By inserting this expansion into (9.125, 124), we obtain the two-sided tridiagonal
recurrence relation

[(u+2in)*+ Q1c,— q(Cpi1+¢n1)=0. (9.127)
The elimination of all ¢, with n %0 leads to

2 o ¢ | ¢ |
[” te lwr2?+Q  |urda®+@

G C AR B PR 9.128)
-2+ Jw-4p+2 7| ° '

If ¢y % 0, the characteristic exponents x4 can be calculated from the condition that
the bracket in (9.128) vanishes. For u = 0 the solution x(7) is periodic in 7. For
solutions with ¢, +0, (9.128) then gives a relation between Q and g for which
only such a periodic solution can exist [5.1].

Generalizations

(i) If higher harmonics occur, i.e.,

d®x/d1? + (ag+ @y coS2 T+ a4 COSAT+ ...+ dyprcOs 2M T

+b,sin2 7+ bysindt+...+ by sin2M1)x=0, (9.129)

the ‘ansatz’ (9.126) then leads to a recurrence relation of the form
M
Y AniCnr1=0, (9.130)
I=—M

which can be cast into a tridiagonal vector recurrence relation (Sect. 9.1.2).
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(ii) Coupled equations of the form

d* xP7dt* + ¥ @B+ aB%cos2 T+ ... +akfcos2 Mt
q

+b89sin21t+...+ bEfsin2M1)x9=0 (9.1292a)
lead to

M
r ¥ AMcl =0, (9.130a)
qgl=-M

which, by using a suitable vector notation, can also be cast into a tridiagonal
vector recurrence relation.

(iii) If a damping term ydx/dr occurs in (9.124, 129), the same method
should also work.

Bloch Equations

The Bloch equations are equations of motion for the matrix elements p;; of the
density operator for a two-level system. For an external cosine field E = A cos v¢
they take the form, see (12.11, 12), (p12 = p%))

Pr— P11 = A= y1(Pn— p11) +1(2e/h)x2(p12— p21) A cos ve,
(9.131)

P12 = (iwo— y2) pr2+i(e/ ) X12(p22— p11) A cOs v .

The constant term A describes the pumping. We look for periodic solutions with
period 2 /v. Because of the special form of the equations, py—p;; can have
Fourier terms with even n only and p(, have those with odd n only. The Fourier
expansions

P—Pii= L dnemt s

n=even

Pi—pu= L s,e", (9.132)
n=odd

invt
pitpu= Y ¢,

n=odd

lead to [9.11]

nvd,= w(Sy11+Sn_1)+ird,—i11d,9, (neven)
nvs, = WCp+ wi(dy 1 +d, 1) +iyss,, (nodd) (9.133)
nve, = weS,+iy2c,, (nodd),

where w, is given by

wh = (e/h)X12A . (9134)
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By eliminating c, from the last two equations in (9.133) we get (n odd)

i 1 1
Sn= - f + A wl(dn+1+dnf1); (9135)
Y2+1(nv— wp) P2 +1(nv+ wp)

and from the first equation of (9.133) we have (n even)

iw A
—1_(Sn+1+sn—1)+—5n0' (9136)

dn: X
y1+1nv 71

If we introduce

={d,,y1/,l for neven 9.137)

sy,y1/A  for nodd
and
_{ (+inv)™! for neven
" %{[y2+i(nv—wo)]‘1+[y2+i(nv+w0)]_1} for nodd

both recurrence relations (9.135, 136) can be cast into the following inhomo-
geneous two-sided tridiagonal scalar recurrence relation

Xp—1w1Dy(Xp 1+ Xp_1) = 5n,0- (9.138)

This relation can be solved in terms of ordinary continued fractions similar to the
one-sided tridiagonal recurrence relation in Sect. 9.2.2. The continued fractions
and some results are given by Stenholm [9.11], see also [9.9, 10]. Allegrini et al.
[9.13] have solved a similar problem for a spin-1/2 system, by 2 X 2 matrix con-
tinued fractions. Obviously, the method can also be generalized to multilevel
systems leading to matrix continued fractions of higher dimensions.

9.4.2 Partial Differential Equations

The procedure of Sect. 9.4.1 can also be applied to partial differential equations.
Here we discuss only the application to a one-variable Fokker-Planck equation.
(A one-variable Schrodinger equation with a harmonic time-dependent potential
may be solved similarly.) Assuming time dependence of a cosine form, this
Fokker-Planck equation reads

W(x,t) = Lyp(x, 1) W(x, 1), (9.139)
Lyp(x,t)=Ly(x)+L(x)cosvrt. (9.140)
According to Floquet’s theorem we have multiplicative solutions

W(x,t) =e"u,(x,1), (9.141)
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where u,(x, ) is a periodic function in 7 with period 2 7/v. Therefore we may
expand u,(x, ) into a Fourier series with respect to #. We furthermore expand the
Fourier coefficients into a complete set ¢” (x) satisfying the boundary conditions
for x. Hence, the total expansion of the probability density reads

Wx, 1) =F(x) ¥ ¥ clem+ApP(x) (9.142)
pn

In (9.142) we have added a function F(x) + 0 which may be useful to simplify the
final recurrence relation (Sects. 5.9.3, 6.6.5). Inserting (9.142) into (9.139, 140)
leads to

LG —inv—pyci+ LY (ci 1+ ¢l =0, (9.143)
q

where L§? are defined by
1

Lg7 = [F() "o (N *LoF () [9?(x)] dx . (9.144)

By truncating the upper indices, we thus obtain a two-sided tridiagonal vector
recurrence relation for the vector ¢, = (c?). The characteristic exponent can then
be determined in a similar way to the eigenvalue A in Sect. 9.3.2. If the Fokker-
Planck operator has the more general time dependence

Lpp(x) = Lo(x)+ Lo(x)cosvi+ L y(x)cos2vi+... +Ly(x)cosMvt

+ L (x)sinvi+Ly(x)sin2ve+... +Lgy(x)sinMvt (9.145)

the ‘ansatz’ (9.142) leads to a recurrence relation of the form
M
Y LAl =0, (9.146)
I=-Mgq ’

which can — by a suitable notation — also be cast into a tridiagonal vector
recurrence relation. It may also happen that for a suitable choice of F(x) and
@”(x) the A%% are of a tridiagonal form in the upper index, which then can also
be solved by a matrix continued fraction. By using a similar method Breymayer
et al. [9.21] have solved the problem of harmonic mixing in cosine potential for
large damping and arbitrary field strength.

9.5 Methods for Calculating Continued Fractions

9.5.1 Ordinary Continued Fractions

To calculate the Nth approximant of the continued fraction

a, a ay
Ky=Dby+ + + ... 9.147
N="Dby ‘Jb1 ’Jbz ‘JbN ( )
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we may start with an /by, then add by _,, take the inverse and multiply it with
an_, and proceed in this way till we reach b,. This downward or tail to head
iteration is very simple. If the @, and b, have simple forms, the evaluation can
easily be performed with a programmable pocket calculator. To check the con-
vergence of (9.147) for N— o one has to start the whole procedure again with
larger N. This disadvantage of the downward iteration is avoided by upward or
head to tail iteration. Here we first calculate 4, and B, by the recurrence
relations [9.1 — 3]

Ap=byA, 1+a,A,

(9.148)
B,=b,B, 1+a,B,_;,
starting with
A_1=1 Ay=5b
: o (9.149)
B_ =0 By=1.
The Nth approximant (9.147) is then given by

If we now increase N we need not calculate the first N, A, and B, again. We now,
however, have a more complicated algorithm than for the downward iteration.

9.5.2 Matrix Continued Fractions

Downward Iteration

The Nth approximant of the infinite continued fraction (9.112),

Kon=0¢ (sI-01-0f (sSI-0Q,—...Q%_1(sT-Qn) '0x...) "
x0) ', (9.151)

may be calculated by starting with the inversion of sT—Q,, multiplying it with
QR from the left and with Q@ from the right and subtracting it from
SI-Qx_;. The inversion of the resulting matrix is then the beginning of the next
step, and we thus finally obtain K. In this way approximately 2 N matrix multi-
plications, 2 N matrix additions and N matrix inversions are necessary. For large
matrices of dimension M x M the number of arithmetic operations is then essen-
tially given by 3NM?>,

If a new approximant with a larger N is needed, we have to start the whole
process again with this larger V. To check for convergence we may increase the
number N proportional to 2% (k=1,2,3,...). In this way about 6 NM?
arithmetic operations are necessary.
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Upward Iteration

To perform the upward iteration we first consider a matrix continued fraction
where the @, matrices are normalized to the unit matrix. That this can be done is
seen from the recurrence relation (9.117) which may be multiplied with the
inverse of @, !, if it exists. Thus we consider the matrix continued fraction

K =by+ay(by+ay(by+ay(bs+...)"HH1. (9.152)
If we introduce the matrices 4, B, by the recursion relations

A=A, 1b,+A, »a,,

(9.153)
Bn = Bn—lbn+Bn—2an ’
with the initial values
A_y=1, Ay=by,
(9.154)
B_;=0, B,=I,
the N'th approximant of (9.152) is given by
Ky=AxNBR'. (9.155)

To check for convergence, the recursion (9.153) can be continued. For this down-
ward iteration 2N matrix additions and 4 N matrix multiplications are necessary,
leading approximately to 4 NM 3 arithmetic operations. It is important to notice
that depending on the magnitude of the matrix elements in a, and b,, the
magnitude of 4, and B, may increase or decrease, leading to arithmetic overflow
or underflow. This must be avoided by rescaling the matrices 4, B, A,_1,B,_1
by a constant factor after an appropriate number of steps has been made.

A comparison of the upward and downward iteration methods shows that
upward iteration is somewhat faster (roughly by a factor of 2), but downward
iteration is simpler to put into program statements and has less storage require-
ments for matrices (roughly by a factor of 2). A similar upward iteration was
used in [9.22].



10. Solutions of the Kramers Equation

The Kramers equation is a special Fokker-Planck equation describing the
Brownian motion in a potential. For a one-dimensional problem it is an equation
for the distribution function in position and velocity space. This Kramers equa-
tion was derived and used by Kramers [1.17] to describe reaction kinetics. Later
on it turned out that it had more general applicability, e.g., to such different
fields as superionic conductors, Josephson tunneling junction, relaxation of
dipoles, second-order phase-locked loops. These applications will be discussed in
Chap. 11. For large damping constants the Kramers equation reduces to the
Smoluchowski equation which is a special Fokker-Planck equation for the dis-
tribution function for the position coordinate only. In this chapter some of the
well-known solutions for linear forces are presented. Next we shall derive a
general solution of the Kramers equation in terms of matrix continued fractions
for arbitrary forces. Expansion of these matrix continued-fraction solutions for
large damping constants into powers of the inverse friction constant gives the
Smoluchowski equation and its different correction terms. Whereas the position
will become a slow variable and the velocity a fast variable in the high-friction
limit, the energy will become a slow variable and the position (or velocity) a fast
variable in the low-friction limit (see Sect. 8.3 for a discussion of slow and fast
variables). In the low-friction limit the procedure depends on the topology of
the energy surface in phase space, which in turn depends on the specific form
of the potential. With the exception of the linear force, special potentials are not
treated in this chapter. Therefore, the low-friction limit is treated in Chap. 11
(Sects. 4, 6.3, 8.1, 9.1), where Brownian motion in a periodic potential is inves-
tigated.

10.1 Forms of the Kramers Equation

The Langevin equation describing the Brownian motion of particles with mass m
in a potential mf(x) reads [cf. (3.132)]

mx+myx+mf (x)=mI(t),
KF@)>=0, IO =2ykT/m)é(t-t"),

(10.1)

I’ Gaussian distributed.
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Here y is the damping constant (t=1/p is the relaxation time), — )
= —df/dx is the force per mass m due to the potential mf(x), k is Boltzmann’s
constant and T is the temperature of the surrounding heat bath. The stochastic
Langevin force mI(¢) is assumed to be a Gaussian random process with &
correlation. To obtain the Fokker-Planck equation, (10.1) is first written as a
system of two first-order equations

X=v

b= —yo—f )+ I().

(10.2)

Using the results of Chap. 4, the special Fokker-Planck equation for this process
then reads (4.112)

OW/dt =Ly W (10.32)

2

) ) )
Ly=Lg(x,v)= ——v+ —[po+f ()] + yvi—— - (10.3b)
Ox ov ov

In (10.3) W(x,v,t) is the distribution function in position and velocity space,
vy = |/kT/m is the thermal velocity (10.9). Equation (10.3) may be written as
a continuity equation (6.1)

ow 98S, 0S,
4+ 9% 99 g 10.4a
ar  ox  Ov (10.42)

where the x and v components of the probability current are defined by (6.3)
S,=vW, S,=—[yv+f (x)IW-yvh0W/0v. (10.4b)
For three dimensions the Langevin equation (10.1) and the corresponding

Fokker-Planck operator Ly of the Kramers equation are given by [1.5-7]

[x = (x1, X3, X3); v = (4,02, 03)]

mi+myx;+mdf(x)/dx;= mI(r)

(10.5)
(O T0)> = 2y(kT/m) 5;8(t—1")
Ly(x,v)= }é‘ ——E—)—vi+ 9 yv; + _E)_f_ + yvtzh—i . (10.6)
i=1 Ox; ov; 0x; dv;0v;

10.1.1 Normalization of Variables

For numerical calculations it is convenient to use the Kramers equation in nor-
malized form. By introducing the following variables and parameters
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t, =vgt, v,=v/vy, X,=Xx,
o =f/0E=mf/kTY,  y,=y/v,, 10.7)
W, = thh s

the Kramers equation (10.3) transforms to

oW, ) ) 02
=1- v, + wUntSo) + Vn—s | W,. 10.8
o, [ ox, "t By, Inint m 4y av?,J (10.8)

The thermal velocity vth of a particle with mass m is defined by the square root of
the averaged velocity v? without potential in the stationary state (3.11, 12)

o=/ 0=/kT/m. (10.9)

The velocity v, is a dimensionless variable whereas the time 1, has the dimension
of length. The inverse of the normalized friction constant is the mean free path

1y, =1=1v04, (10.10)

i.e., the distance which a particle with velocity v,, would reach in the relaxation
time 7. (The variable x may be of course an angle variable. Then v will become
the angle velocity.) The normalization (10.7) corresponds to the normalization
kT/m =1 in the Langevin equation (10.1). The normalized from (10.8) is not
very convenient if the zero temperature limit 7-0 (i.e., vy~ 0) is considered.

10.1.2 Reversible and Irreversible Operators

The operator L of the Kramers equation may be split into a reversible or stream-
ing operator L,., and an irreversible or collision operator L; (6.90, 103, 104)

LK=Lrev+Lir (1011)
Liey= —vd/(8x)+/"0/(8v) (10.12)
L= y3/(@v)[v+v28/(dv)] . (10.13)

The operator L., describes the motion of an ensemble obeying the reversible
equations

X=v

v=—f"(x).

(10.14)
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The total derivative of the distribution for such an ensemble is given by

dw _ 6W+ aW)'c+ 8Wz}= aW—Lm‘,Wzo.
dt ot Ox v ot

(10.15)

The solution of this equation with the initial distribution W(x, vo,0) reads

W(x’ v, t) = SS&(X —X(XO’ Vo, t)) 5(0 - V(XO’ Vo, t)) W(x07 Vo, O) dedUO ’ (10'16)
where

x = X(xq, Vg, 1) (10.17)
v = V(XO, Vg t) ’

is the solution of (10.14) with initial values x = xo, v = vg at ¢ = 0. Because of the
special form of (10.14) the motion is reversible. Therefore, starting with the x
and v coordinates, the initial coordinates are reached after time — ¢, or starting
with x and — v after time ¢

Xo= X, v, — )= X(x, —0,1)
(10.18)
vo= V(x,v,—t) = = V(x, —0,1).

The solution W(x, v,¢) of (10.15) with initial condition W(x,v,0) may then by
written as

W(x,v,t) = W(X(x,0, — 1), V(x,0, —1),0). (10.19)

The derivation of (10.19) from (10.16) runs as follows. We first use X and V as
new coordinates. Next we note that the Jacobian

aX 0X

J=| % Bv|_y (10.20)
ov oV
on 800

is equal to one. This may be shown by differentiating J with respect to time. It
then follows from (10.14) that J =0, i.e., J(£) = J(0) = 1. Because the inverse
relation of (10.17) is given by (10.18) we obtain (10.19). We finally remark that
L., is an anti-Hermitian operator.

The irreversible operator L;, has a second derivative if the temperature is not
zero. [For zero temperature but finite friction constant y the solution of (10.1) is
no longer reversible and (10.19) no longer holds.] The operator L is neither an
anti-Hermitian operator nor an Hermitian operator.
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10.1.3 Transformation of the Operators

The stationary solution of L;, is proportional to exp[— v%/(2v3,)]. By multiplying
L, from the left with the square root of the stationary solution and from the right
with the inverse of the square root of the stationary solution, L;; can be brought
to an Hermitian form (Sect. 5.4):

1 2 1 2
L_irz exp | — L L exp| —— v
4 U[h 4 U[h
2 2 '
2 O 1/ v 1 =
Y [ th 81]2 a <Uth> 2i| r ( )

The operator L, has the same form as the Hamilton operator for the harmonic
oscillator in quantum mechanics. We therefore employ this connection with
quantum mechanics and introduce the annihilation and creation operators b
and b7

0 1 v 1 v

b=vy—+— —, b+=—vthi+—-—, (10.22)
ov 2 oy ov 2 vy

where the commutator for these boson operators is equal to one

[b,b*]=1. (10.23)
The operator L;, is then

L,=—-yb*b. (10.24)

To take advantage of (10.24) we have to transform the Fokker-Planck operator
Ly according to (10.21). Instead of (10.21) we use the more general transforma-
tion

L_K= Lrev+L_ir

1 2 1 2 (10.25)
CRREYES DOVIEY MW TS SO
Ir 4 \ vy U ir 4\ vy 2

where ¢ is an arbitrary constant. Because L;, does not act on x, L; is still given by
(10.21, 24). For the reversible operator L., we get

Liey= —v/3x+f 8/dv+(e— L) f v/v3
=Lrev+(8_%)f’0/vt2h= —bD—b+ﬁ. (1026)

In the last expression we have introduced the differential operators D and D
defined by
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D=0v,8/0x—¢f /vy, D=v,0/8x+(1—8)f"vy. (10.27)
The commutator between D and D is

[D,D]=f". (10.28)
For ¢ = 1 the differential operators are the negative adjoints of each other, ie.,

D*=-D for e=1% (10.29)
and the transformation (10.25) is then the transformation with the square root of
the stationary solution (if it exists), according to (6.35). For & = 1 the operator
L, is still an anti-Hermitian operator

Li,=—-b*D*—bD* =b*D+bD=—L,,, for &=1. (10.30)
For other values of the parameter & this is no longer true. As will be shown
below, the choice & = 0 is also very convenient.

In the three-dimensional case we may proceed in the same manner. By intro-
ducing the boson and differential operators

. 1 )
bi=vthi+i i pr= _Uth_E_J,_L, (10.31)
ov; 2 vy ov; 2 vy
~ 1—
Dimvy O & py, 0 070 O (10.32)
ax,» Uin ax,» Bxi Utn Bxi
the Fokker-Planck operator may be written as
1 02 o)\ - 1 2 flx
Ly =exp| - — —— & |Lgxexp|— —+t&—— ], (10.33)
4 vy Uth 4 vy Uth
L_K =L_rev+L_ir’ (1034)
-_— 3 ~
Liy=— Y (b;Di+b/ Dy, (10.35)
i=1
_ 3
L, =-yTLbi'b;. (10.36)
i=1

10.1.4 Expansion into Hermite Functions

By expanding the velocity part of the distribution function W(x,v,t) of the
Fokker-Planck equation into Hermite functions we obtain a tridiagonal coupled
system of partial differential equations for the position and time-dependent



10.1 Forms of the Kramers Equation 235

expansion coefficients. As shown in Sect. 10.3, this coupled system may be
solved by matrix continued-fraction methods. We choose Hermite functions for
the following reasons: (i) they are eigenfunctions of L;,, (ii) they form a complete
system, (iii) they have the correct natural boundary conditions in velocity space
— oo < v< o, (iv) they lead to the tridiagonal structure of the coupling mentioned
above.

The normalized eigenfunctions of the operator L,,= —yb™ b, i.e.,

L_ir Wa(v) = —yny,(v), b*b Wn(v) = ny,(v) (10.37)
are given by

Wa(v) = (b "wo(v)/)/n!
wo(v) = exp[— +(v/v)*V )/ v}/ 270 .

In terms of the Hermite polynomials H,(x) usually used in quantum mechanics
or in terms of the Hermite polynomials He,(x) =2~ "/ 2H,,(x/]/i) (see [Ref. 9.26,
p. 250} for a definition) the functions y,(v) read

wa(v) = H,(0/()/ 204)) exp[ - v/ (4v3)1/)/ n! 2" v}/ 27, (10.39)
w,(v) = He, (v/vy) exp[A— v/ (4 ,vtzh)]/l/ nlogl2n . (10.40)
They agree with those used in Sect. 5.5.1, if we replace v by x and vy, by |/ D/7y.

The variable £ used in that section is then connected to v by ]/ff = 0/Vy,.
The eigenfunctions w,(v) are orthonormalized

(10.38)

T 0@ wn()d0 = 6, (10.41)

Because the Fokker-Planck operator Ly is of the form [compare (10.25, 38)]

Ly = — wo(v) exp[— &f(x)/v](yb* b+bD+b* D)
X exp[ef(x)/ v [wo(v)] ™ (10.42)

we expand W(x, v, ) in the following way:
W(x,0,1) = wo(v) exp[— 6/ (x)/v}] }gocn(x, 1) wu(v) . (10.43)

The distribution function in position only is then given by the first expansion
coefficient

T W(x,v,t)dv = exp[ — ef(x)/v& ] co(x, 1) (10.44)

— oo
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and the x component of the probability current (10.4b) integrated over the
velocities is given by the next expansion coefficient [v yo(v) = vy w1 (V)]

§Sc(x,v,8)dv = fo W(x,v,t)dv
= vy exp[— 8f(x)/vt2h]c1 (x,1). (10.442)

Equation of Motion for the Expansion Coefficients

To obtain an equation of motion for the expansion coefficients, we insert (10.43)
into the Fokker-Planck equation W = Ly W. Because of (10.26, 37) and because

by, (v) =V n+1y,,4(v)

(10.45)
b!//n(v) = W u/n—i(v) ’

we easily obtain the following hierarchy for the expansion coefficients c,(x, t)
(c,=0for n<0)

dc,/0t= —)/nDc,_1—nyc,—|/n+1Dc,, . (10.46)
If instead of the coefficients c, the coefficients

¢,=c,/|/n! (10.47)
are used, the square roots in the recurrence relations (10.46) disappear

8¢,/0t= —Dé,_1—nyé,—(n+1)Dé, . . (10.48)
[For numerical purposes one should use the coefficients c,,, because otherwise the
large factors |/n! occur in the expansion (10.43).]

The Laplace transform of (10.48) for & = 0 was first derived by Brinkman
[10.1], therefore (10.46, 48) are sometimes called Brinkman’s hierarchy. This

hierarchy of equations is equivalent to the Kramers equation. Equations (10.46)
read explicitly

(0/81)co+ /1 D¢, =0
/1D cy+ 8/t +1y)c,+/2Dc, =0
V2D e+ (®/0t+2)cy+1/3Dc, =0 (10.46 )
/3Dc,+(0/3t+3y)c;+|/4Dcy, =0
=0.

In the stationary state, a general solution of (10.46a) is easily obtained for the
case where the probability current in x direction integrated over the velocities
(10.44 a) vanishes, i.e., ¢; = 0. This solution is given by
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Deo=0, e, cox)~exp[—(1—&)f(x)/v3)]
(10.49)
c,=0 for nzl1

and the corresponding distribution (10.43) is the Boltzmann distribution

W, = Nyi(v) exp[— f(x)/v] = IN/()/2mvy)] exp[— E/KT)] , 10493
. a
N={fexp[—f(x)/v]dx} "

Here E = mv?%/2 + mf(x) is the energy. If the probability current in x direction
integrated over the velocities does not vanish or if the instationary solution is
considered, the coefficients c, are generally not zero for n = 1.

In the three-dimensional case we may use the expansion

W(x,v,t) = wo(v1) wo(v2) wo(vs) expl—&f (x)/v]
X T Copmynd® 1) Wi (01) Win(02) W (03) (10.50)

Ry, Ry, 1

and obtain the hierarchy

n1 nyny ‘/ D1C”1 1,n5,03 [/ D2cn1 ny—1,n3 V—D3cn1 ny,n3—1
_Y(n1+n2+n3)cn1,n2,n3‘|/ n1+1chn1+1,n2,n3

—Vm+1Dy¢s 41,0, = V3 +1 D3¢k 0y nyrt s (10.51)

where D; and D, are given by (10.32).
In this case, the operator L, is essentially the same as the Hamilton operator
for a spherical harmonic oscillator.

10.2 Solutions for a Linear Force

For a linear force per mass —f' (x) = ax + b the Fokker-Planck equation can be
solved exactly. We first note that the constant b is taken into account by a proper
shift in x (¥ = x+ b/a) so that without loss of generality b can be put to zero.
First we treat the case of a harmonically bound particle [1.5 - 7]

—f(x) = —wix, fx)=wix¥2, wi>0 (10.52)

and later the case of a repulsive linear force.
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10.2.1 Transition Probability

The Langevin equations (10.2), which may be written in the form

()0 () o
dr \ v w; Y v @)

describe a two-dimensional Ornstein-Uhlenbeck process. Therefore the general
solutions in Sect. 6.5 can be applied. The drift matrix y and the diffusion matrix
D then read

y=<02_1>; D=<0 02>. (10.54)
wy Y 0 yvy

According to (6.124) the transition probability P(x,v,?|x’,v’,0) is given by the
. two-variable Gaussian distribution (¢ = 0)
P(x,v,t|x",0',0) = 271) "' (Dete) ™2 exp{— LIo (N ulx—x (1))

— o™ O wlx —x(O1 [0 — ()] = L6 (O] olo — v (O]}
(10.55)
with mean values (6.117, 122)
xy = x(t) = [exp(— P X’ + [eXp(— PO o0’
(U) = U(f) = [CXP(—}’f)]uxx' + [eXp(_ yt)]vvv, .

(10.56)

By using the spectral decomposition (6.121) (* indicates the dyadic product)

p= A uDep®t 1u@ap® (10.57)
w0 (7YY o 1) (10.58)
/11 _'12
=1 1, @=—1 @, (10.59)
1—12 17— A2
M=t VY—4wd), Mth=y, Ai= +w} (10.60)

we get, see (6.122),

/lle_lzt—/lze_lit
A=A

Gu(0) = [exp(= PO =

e hi_e

Gxut = =¥l =—7—
(O = exp(~ 70l = <=
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e 111 t__ e —nt
Ay— 4y

/116711[_/1267th
A= 4,

va(t) = [exp(— yt)]vx = w%

Gy(t) = [exp(—pD)] = (10.61)

The symmetry matrix ¢! follows from the symmetric matrix 6(0yy = O,)

(67 Yy = 0,,/Deta
(Gil)xv = (ail)vx: _Uxu/Deto'
1 (10.62)
(67 )y, = 04x/Deta
Det6 = 0,0, —(04,)%.

Finally, the expressions for the ¢ matrix, which may be obtained from (6.123) or
(6.118), are

2
(1) = —VVib {/11+/12+ 4 (e~ G+ i)i_qy

M=% Ay A+ 4y
_%e_u‘,_%e—uzzjl, (10.63)
1 2

2
YUih (e—,llt_e—/lzt)z
3

xw(f) = ———
7 (A—A2)?

2
g,,(t) = _ﬂ—z‘ A+ A+ M(e—(lﬁlz)l_1)_,116—2,11t_1126—2,12, .
('11_'12) /11+/12

These expressions may be found for the three-dimensional case in [1.6, 7],
together with expressions for (10.61, 63) in terms of hyperbolic and trigono-
metric functions (overdamped or underdamped case).

Stationary Solution

For w}> p?/4 the real parts of the eigenvalues A1, and for Y4 = wE >0 the
eigenvalues are larger than zero. Therefore (10.61) vanishes for ¢ — o and for
(10.63) we obtain

2 2

Uth Vih

Oyp(0) = =—
Ay wp

Gp(9) =0 (10.64)

2
O'W(OO) = Utp -
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Thus we have

—1 2,.-2 -1 —1 -2
(0' )xx=wol’m s (0' )xvzo, (0' )vvzvlh ’

(10.65)
Deto = v/ w}
and the stationary distribution is the Boltzmann distribution
Wy(x,v) = P(x,v,0|x',v',0)
o 1 v2 wix?
=TSP\ T T 3
2n Vih 2 Uth 2 Uih
2 2.2
= @o exp| — w (1066)
2nkT 2kT

mawo E
= exp| ———).
2nkT kT
Free Brownian Motion

For Brownian motion without an external force, we obtain the corresponding
expression by taking the limit w§— 0, i.e., 4; =y, 1,-0 .
Expressions (10.56, 63) then simplify to

x()=x"+ y_1(1 —e "y’
(10.67)
v(t)=e v’
o (1) =03y 2Qyt=3+4e M —e 2
O =vhy '1—e7) (10.68)

T,(t) = vA(1—e 27" .

Inverted Parabolic Potential

For the inverted parabolic potential
f) = - twix?, wi>0 (10.69)

all the transition-probability expressions remain valid. The only exception is that
the eigenvalue equation (10.60) has to be replaced by

A=ty Y+4wi). (10.70)

As it is immediately seen, the second eigenvalue 1, then has a negative value. For
large times x(¢) and v(¢) grow exponentially if x(0) 0 or v(0) + 0. Also the
width of the distribution grows exponentially. No stationary solution exists in
this case.
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10.2.2 Eigenvalues and Eigenfunctions
To find the eigenvalues and eigenfunctions of the operator (10.3b)
Lyxw(x,v)= —Ay(x,v) (10.71)

we first transform the Fokker-Planck operator according to (10.25) with £ = 1.
The eigenfunctions y of the transformed operator Lg

Ly, v)= —Ap(x,v) (10.72)

and those of L are connected by

2
w(x,v) =exp {-‘1? <_v_> + i f(x)} w(x,v). (10.73)

p)
Uth 2 vy

For a harmonic potential (10.52), the commutator of D and D is equal to the
constant w3 (10.28). We therefore introduce the boson operators

a = _D_ = ﬂh_ i w() X
w, wy Ox 2v
o %0 th (10.74)
Wy wy Ox 20y

which fulfill the boson commutation relation [e,a*] = 1. The operator Ly then
takes the form

Lyx=—yb*b—wyab™—a*b). (10.75)

The stationary (4 = 0) solution of (10.72) which we call i, , is obtained from

aipn0=bo0=0, (10.76)
leading to
2 2.2
_ Wy 1/ v 1 wpx
Wo,0(x,0) = exp| - —(— |} —— , (10.77)
0.0 27”?[2}1 l: 4 <vlh> 4 Ulzh :l

which is the square root of (10.66). (The normalization will be discussed later.)
To transform (10.75) to a simpler form we introduce new operators by the
transformations

1y =072/ Mb* — /1)
ci_ =0 2/ b+)12a)

e =0 2(=VAb* +)/at)
e =072/ b+ 1a).

(10.78)
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In (10.78) A4 and A, are the eigenvalues of the equation of motion without noise
[see (10.60)] and the square root is denoted by ¢

,1% =(y+0)/2, d=|y*—4wi=2;—21,. (10.79)
The inverse relations to (10.78) read

b* =62/ hery + )/ Dxe20)
b =62/ her-—Vheo)

(10.80)

at = 5_1/2(1/T2C1+ + ]//1—1C2+)

a = 5_1/2(—]/Izc1_ + ]//Tlcz_) .
The operator Ly is transformed to

Ly=~2iciicio—Aycp,cpe (10.75a)
and the commutation relations are

[cic ] =l 0041 =1

(10.812)
[ci, o=l ,ad=lc_,0 1= [c14,624]=0.
[(—Lg),cin]l= tdich 5 (i=1,2). (10.81b)

Though c;, is not the adjoint operator of c;_, eigenfunctions of Lk can be con-
structed in the same way as for the harmonic oscillator in quantum mechanics

Wiy, my (65 0) = (11 1) ™2 (€10 (€2.)™ i o (x, 1) - (10.82)
The eigenvalues of L are therefore given by

'1711,112 = A’lnl + A’an

(10.83)
=2y(m+ny)+ Lo(n—ny).

For the underdamped case y < 2 w, these eigenvalues are complex

s=il/d4wi-y’=2iw, (10.84)

whereas for the overdamped case all the eigenvalues are real. For large friction
y > 2 wy the eigenvalues are grouped together according to

Ayny = y01+ (@3/P) (M= 1)+ O(y ) . (10.85)

Some patterns of eigenvalues are shown in Fig. 10.1.
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Im {)\} Fig. 10.1. Eigenvalues (10.83) for y/2 < wy (a) and for y/2 > w, (b)

The eigenfunctions * of the adjoint operator

Ly = =M cfy = Ayes cf, (10.86)
with the eigenvalues Any,n, ar€

Wy, nfX,0) = (] my1) ™ 2(ef ) (e32) 2 o (x, v) (10.87)
The adjoint operator is defined by

f(AT p)wdxdv = [pA ydxdo . (10.88)
Notice that we do not take the conjugate complex definition of the scalar product

as used in quantum mechanics.
The eigenfunctions * and i form a biorthogonal set, i.e.,

jl/_/,;:,nz(X, U) l/_/n{,né(xs v)dde = 5n1,n1’ 5n2,n2’ . (1089)

As seen from (10.30, 22) or (10.26), the adjoint operator of Ly for ¢ =1 is
obtained from L by replacing v by —v
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L (x,v) = Lg(x, — ). (10.90)

Because ¢;_(x,v) = —c¢1, (x, —v) and ¢ (x,v) = ¢z, (x, —v), the eigenfunc-
tions (10.87, 82) are connected by

B s 0) = (= )" g, 0, = ) - (10.91)

Because i, ,, and ¥y, ,, form a complete set and because the prefactor of ™ is
the inverse of the corresponding one for y (10.73), the transition probability
(10.55) in terms of eigenfunctions is given by

242 2 2 .2
P(x,v,t|x’,v',0) = exp —_1_0_21;__&_{_;__
4 Vi 4 Vih

X ¥ y"/,z’,,z(x’,v’)q'/,,wz(x,v)exp(—,l,,l,,,zt). (10.92)

nl,n2=0

(For t =0 one obtains the completeness relation.) A similar derivation to that
here is in the appendix of [10.2].

Another method for determining the eigenvalues of (10.75) is the following.
We expand the eigenfunction ¥ into eigenfunctions w,(v) of b* b and ¢,(x) of
a* ain the form

P = ¥ (O CEDIZOT O (10.93)

n,m=

Inserting (10.93) into Ly = — 4 leads to (¢,,» = 0 for 1 <0 or m <0)
(PR—A)Cpt WoNCy_t st~ QM Crit,m-1=0- (10.94)

By this relation only a finite number of coefficients with 7+ m = N are coupled.
Changing the notation of the coefficients to

Y= Conon (10.95)
we get the tridiagonal coupled relation (0 =n =N )
nawey®+(ny— )y —(N-n) oy =0. (10.96)

The eigenvalues for N =3, for instance, can be determined from the special
determinant (= continuant)

-1 —3600 0 0
1w -2 2wy O

o ¥ 0 ~0. (10.97)
0 2wy 2}’—/1 — Wo

0 0 3w, 3y-4
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It follows from (10.82, 83) that the four eigenvalues must have the form
(ni+ny,=N=3)

3
1

A=3y/2+ |/ y¥/4— wf x L (10.98)
-3

which may be checked by insertion.

Velocity Correlation Function

For this linear process, the stationary velocity correlation function (v (¢f)v(0))
can best be calculated using the Langevin equation or the fluctuation-dissipation
theorem, see (7.63). As an application of the eigenfunction expansion (10.92),
however, we determine the correlation function using this expansion. The cor-
relation function is defined by

v(®)v(0)) = fvo' P(x,v,t]x",v",0) Wy(x',v')dxdvdx'dv’

= T §0W0,0Wn,n,dxdv §v 0,0 W5, p,dxdoexp(= 4y, ,,0) -
" (10.99)

From v = v, (b* + b) and (10.77, 80, 82, 87) we have
v Wo,0=vmb* Wo,0= 000" (VA1cr11 4V A202,) W00
=000 A/ A 1,0+ )/ 22 W0,1)
=040~ A/ Aief = /D23 ) 00
=000 (/A @0~V 22 060) - (10.100)

The biorthogonality relation (10.89) leads to

03 [A1exp(— 44 ,00) — Azexp(— Ag,11)]
A=A

Ao=41, Ao1=4y. (10.101)

(o) v(0)) =

With a little algebra it is seen that for the underdamped case (10.101) reads

(w()v(0)) = vi exp(— yt/2){cos|/ w3—yY4t

— [/ Q) wi— v/ sin}/ wi— y*/4t}. (10.102)

Inverted Parabolic Potential

For the inverted parabolic potential (10.69) one of the two eigensolutions of the
noise-free equation increases exponentially and no stationary solution of the
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Kramers equation exists. Nevertheless, we may look for decaying solutions of the
Kramers equation, which can be normalized according to [y * wdxdv = 1, where
w* is the eigenfunction of the adjoint operator L *.

A similar result was obtained in Sect. 5.5.2 for the solution of the
Smoluchowski equation with an inverted potential. One may use the same
expressions as for the parabolic potential (10.52), but replace w, by iw;:

D v 9 iw ‘4
at=—- 2 =t ~ 4 lx=ia
1wy iw Ox  2vy
A (10.103)
D v ] iw ..
a = =4+ - 4 x=igT.
1wy iwg Ox 20y

For the operators d and é* one has formally the same relation as (10.74) with
replaced by w,. Therefore these operators should now be used. The transformed
operator (10.75) then reads

L= —yb b—w(@b—a*h") (10.104)

which cannot be brought to the form (10.81) by the transformation (10.80).
The easiest way to obtain the eigenvalues seems to be the following. We first
introduce the new variables

=0+ Ayx
(10.105)
Zp=v+A1x.
The Langevin equations (10.2) are then transformed to
Zi=—Azy+ (@) for i=1,2 (10.106)
and the corresponding Fokker-Planck equation reads
W _ i w,
ot
9 3 a . oY\
L =l—z+hh—z+yvi | —+—]). (10.107)
821 8z2 821 aZZ

This equation was used in [1.6, 7] to determine the transition probability (10.55).
For the inverted potential (10.69), the first eigenvalue 1, is positive but the
other is negative

A=3(/Y+4oi+y) =m>0
da=—4(/y*+4wi-y) = —u;<0.

(10.108)
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Next we introduce the boson operators

bi:alaa +%‘z_l, bi+=_aiaa +%is
i % Zi % (10.109)
[bi) bj+] = 51]
with
o = yvk/u;. (10.110)

In terms of these operators the operator L has the form
L = exp(— @)L exp(P)

L = —u;bi by— b, b5 —2w0,b{ b, (10.111)
i/ (dad)—23/(4ad).

Finally we expand the eigenfunction y of (10.107) into eigenfunctions v and
wP of the number operators b;' b

b biy(z) = ny(z) (10.112)
in the following way:

W(xs D) = exp(— ¢) l/_/(x’ D)

- (10.113)
o)=Y u(@) u2() .
n1,n2=0
Then the eigenvalue equation L i = — A leads to the following coupled system
for the expansion coefficients Cny,ny (Cny,n, = 0 for ny <0 or ny < 0)
[+ o (ny+ 1) = A1 €y iy + 2001 )/ [ a4 L 1y 01 = 0. (10.114)

By this relation only a finite number of coefficients with 7, + 1, = N are coupled.
Changing the notation of the coefficients to

YV =eN_pns (10.115)
we get the recursion relation (ny = N—n, n, = n)
[N =)+ w(n+ 1) = AlyNM+ 20 )/N-n)/n+1y™ = 0. (10.116)

We immediately obtain the expression for the eigenvalues by requiring that the
recursion terminates at some finite n <N (n=0,1,...,N=0; nz0n,=0)
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AN =y (N—n)+up(n+1)
Angmy = a1y + la(ny+1) (10.117)

= %l/m(nﬁnﬁ D+ Ly(n—ny—1).

The eigenvalues are all real and positive. The coefficients y™ with m = n are
obtained from (10.116) by iteration.

For the eigenfunctions w* of the adjoint operator L * we may proceed in the
same way. Writing in analogy to (10.111)

Lt =exp(®)L " exp(— D),
L*= —u1b1+b1—u2b2b2+—2w1b1b2+,

(10.111a)

we can make the same expansion (10.113) for the eigenfunctions y*=
exp(— @)yt of L*. These two expansions then guarantee that the integral
fw*wdxdo = [ ydxdo exists. We now want to show this explicitly for the
eigenfunctions w and w* with the lowest eigenvalue of (10.117).

Lowest Eigenvalue and Eigenfunction

The lowest eigenvalue is obtained by setting n; = n, =0

doo= (/P +4wi-y). (10.118)
The eigenfunction for the eigenvalue (10.118) is given by
w =N exp(— @) wb(2)) ¥’ (2)
= Nexp[—z}/(2ad)] = Nexp[ —uy (v — %)/ Q2 yoin)] - (10.119)

The eigenfunction w* of the adjoint operator L* for the lowest eigenvalue
(10.117) is

w* = Nexp(®) yl(2)) wh (22)
= Nexp[—23/(2ed)] = Nexpl - (v +mx)/Q2yva)] - (10.120)

The integral of the product of (10.119, 120) exists and the normalization constant
N reads

N=(§fw* wdxdo) ™2 = [(u+ 1) 01 /Qryoi)] 2. (10.121)
For large damping constants (y >2wj) we have uy =y, 4 = w?/y and we obtain

w =Nexp[-m(v—wix/y)/Q2kT)],
wt =Nexp[—m(v+yx)*wl/2y*kT)].
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For small damping constants (y €2 w;) we have u; = u, = w,, giving

y =Nexp[-m(v—wx)w/QykT)],
w =Nexp[-m(v+ wx) w1 /QykT)].

Free Brownian Motion

Without any force we can make the ansatz
wix,v) = e* g (v) exp[— (v/v) /4] . (10.122)
Inserting (10.122) into Lgyw = — Ay with Lg given by (10.3b) leads to
2
[yvtzh—aa—:z—+%y—i—y<vim> —ikv} =g, (10.123)
which, by shifting the velocity according to
§=v+2ikvd/y, (10.124)

is transformed to the harmonic oscillator equation

2 A \2 2.2
2 O i 1 7 k vy
v — 4+ —y—_— 9y — )+ 1- =0. 10.125
I:V th 352 ' > Y 2 )’<Uth> . ) ( )

The eigensolutions and eigenvalues of (10.125) are [see (10.21, 38)]

9uk(0) = () = wa(v+2ikv§/y), (10.126)
Ak (@) = ny+k*o3/y . (10.127)

Without any boundary conditions in x, & is arbitrary and the eigenvalues (10.127)
are continuous. For periodic boundary conditions in x with period 27, k =0,
+1, +2,... and the eigenvalues are discrete. (See also Sect. 11.9 for a discussion
of eigenvalues in a periodic potential.)

10.3 Matrix Continued-Fraction Solutions of the Kramers Equation

In this section we shall derive general solutions of the Kramers equation in terms
of matrix continued fractions [9.19]. The matrix continued fractions are well
suited for numerical calculations, as will be shown in Sects. 11.5—9, where we
treat the Brownian motion problem in periodic potentials. The matrix continued
fractions are, however, also useful to derive analytical results. In Sect. 10.4 the
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matrix continued fractions are expanded in the high-friction limit leading to the
correction terms of the Smoluchowski equation.

The starting point of our consideration is the Kramers equation in the form of
Brinkman’s hierarchy (10.46 or 46 a). This hierarchy of equations can be cast into
the form of the tridiagonal recurrence relation discussed in Chap. 9 by further
expanding the Hermite expansion coefficients c¢,(x,¢) into a complete ortho-
normal set ¢9(x),

SlpP())* p(x)dx = 6,y

(10.128)
T 0P(x) [P (x)]* = o(x—x"),
)
satisfying the boundary conditions in position space i.e.
calx, )= Y el pix). (10.129)
q

If we are looking for solutions of the Kramers equation which are periodic in x,
as complete set a Fourier series will be used. If we are looking for solutions with
natural boundary conditions in x(— oo <x<oo), properly scaled Hermite
functions seem to be a good choice. As the complete set we may also use the
eigenfunctions of a Schrédinger equation corresponding to the Smoluchowski
equation with the potential f(x) (Sect. 5.4). Because these eigenfunctions must
generally first be calculated numerically, determinaton of the matrix elements
(10.131) with these eigenfunctions may thus become very complicated.

By inserting (10.129) into (10.46), multiplying the resulting equation with
(¢?(x))* and integrating, we obtain the one-sided tridiagonal vector recurrence
relation (9.10) with

Q) =—/n¥iD, Q,=-nyl, Qy=-|/nD. (10.130)
The matrix elements of D, D are defined by
AP = [P (0)* Api(x)dx, (10.131)

where A has to be replaced by D = v, 8/0x—¢&f"/ vy and D = v, 0/8x+(1 —¢)
X f'(x)/ vy The column vectors ¢, have the components ¢/, i.e.,

c,=(c). (10.132)

To deal with finite matrices of dimension QX Q, expansion (10.129) has to be
truncated at ¢ = Q.

The friction constant y may depend on position (Sect. 10.4.4) but it should
always be larger than zero [y(x) > 0]. The temperature T, i.e., vy, is assumed to
be independent of position. (If the temperature depends on position, the eigen-
functions y,(v) also depend on position. The operator 8/dx then also acts on the
eigenfunctions w, leading to a coupling of the ¢, of higher order. By a suitable
vector notation this higher-order recurrence relation can again be cast into a
tridiagonal recurrence relation.)
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10.3.1 Initial Value Problem

The general solution of (10.46) with the initial value c,,(x,0) can be written as
c(x,t) = § SG,,,m(x,x’, 1) c,,(x',0)dx’ (10.133)
m=0

where the Green’s function has the initial value
G i, x',0) = 5(X—X") O - (10.134)
The initial values for the coefficients of the expansion (10.43) are given by
Cml(x,0) = [ W(x,0,0) wp(v) explef(x)/ v/ wolv)do . (10.135)

In our vector notation (10.133, 134) take the form

Cn= ijOGn,mcm(O) , (10.133a)

Gom(0)=16,m, (10.1342)
where the matrix elements of G, ,(t) are

GEL.(1) = (§10P())* G, x', ) @9(x"Ydx dx' . (10.136)

Green’s function G, ,(x,x’,t) in x representation expressed by the Green’s
function G2%,(¢) in ¢ representation reads

Gpm(x,x,0) = ¥ P) G L) [9(x)]* . (10.137)
p:q

According to (9.109) and because of (10.130), the Laplace transform of the
Green’s function matrix

Gm(s) = (G, m(t)e™*d1 (10.138)
0
can be expressed for n = m by
Go,m(s) = Us+m ) — K (s)] ! (10.139)
where the Laplace transform of the memory kernel K, (¢) is given by

K, (s) = —)/m+1DS} (s)— |/mDS,(s) . (10.140)

As mentioned in Chap. 9, the Green’s function G, ,(#) is a solution of the
integral equation
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Crm(6) = ~ MY Gy (0) + (Kt — ) G m(D)d T (10.1393)
0

with the initial condition G, ,(0) = 1. Equation (10.139) is the Laplace trans-
form of (10.139a).
The other solutions n + m follow from

90

,,,m(s) = U,y n(5) Gy, m(S)

()—s,,+ (S 5(5)...5H(s) for nzm+1
(10.141)

m,m(s) =
U, n(s) = §;+1(s)§,,‘+2(s) ..Sn(s) for Osn=m-1.
Thus the Green’s function G, ,,(¢) follows from G,, ,(f) by convolution with
U, m(?) according to the first equation of (10.141).
The S, are given by the infinite continued fraction [cf. (9.104)]

SH(s)= —)Yn+1sl+(n+V)yI—(n+2)D[sl+n+2)yI—...17'D}"'D,

(10.142)
whereas 57,,‘ is given by the finite continued fraction [cf. (9.105) n = 3]
So(s)=0
ST(s)=-s"'D
S5 ()= —2[sI+yI-Ds~'D]1"'D (10.143)

S, ()= —/nsI+(n—1)yI—(n—1)D[sI+(n—2)yI
..=Ds™'D...17'D}"'D.
With the help of Green’s function the transition probability P(x, v, t|x’,v',0) of
the Kramers equation, i.e., the solution of (10.3) with the initial distribution

P(x,0,0|x,v,0) = 6(x—x") (v —v") (10.144)

can be constructed. The successive insertion of (10.144) into (10.135) into
(10.133) into (10.43) leads to

P(x,v,t|x’,v',0)

_ wol(v) exp[—&f(x)/vi] &
Wolo') expl = ef(xV/oh] miveo_ YA )
wo(v) exp[—ef(x)/vg] =

= p q *GEP(1) wy m(v') .
a0 expl —ef )/Uth]nmE . qu(p " (xN* Giln(®) wn(v) win(o')
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Thus the Laplace transform of the transition probability is expressed by the
matrix elements G5%,(s) of the matrix G~,,’,,,(s), the solution of which is given by
(10.139 — 143) in terms of matrix continued fractions.

The Laplace transform of the Green’s function Goko(x,x’,s) is formally
obtained from (10.139 — 143) by replacing the matrices D, D by vy, 8/9x — ef" (x)/
Vg 0 0/8x+(1—¢€)f/vy. We then get a solution in terms of continued inverse
operators. In (10.139) the inverse operators have to be applied to the ¢ function
o(x—x").

If a stationary solution of the Kramers equation exists and if the probability
current is zero, the stationary solution is given by (10.49a). The stationary joint
distribution is then given by (¢ = 0)

Wy(x,v,t;x,v",0) = P(x,v,t|x',v',0) Wy (x',0")
= Nyo(v) exp[— f(x)/v3] wo(v') exp[— (1 — &) f(x')/v 1]

X T TGP 0P [0UX* wa(®) wmv')
mm=0 p.q (10.146)

For ¢ = ] the expression takes a symmetric form in x and x'. The autocorrelation
function of the velocity, K,,(), is easily obtained from (10.146) by using
v w1(v) = vwo(v) and the normalization (10.41). The result for the half-sided
Fourier transform K,,(w) is (s = iw)

o) = [(o(Do@)ye " ds
0

= [{{§jor’ Wa(x,0,6x', v, 0)dxdx’ dvdv’e " dt
0

= Nv}, ¥ [fexp[— ef(x)/vi] 9P (x)dx]
b.q
X [fexp[— (1 - &) f(x)/vk] p9(x) dx]* G (iw) . (10.147)

The continued fraction needed for obtaining G, ; is explicitly written down in
(10.210, 211). As seen for the Brownian motion problem in periodic potentials,
matrix continued fractions may be calculated numerically. The speed of con-
vergence of the matrix continued fractions depends on the friction constant y.
For large friction only a few terms need be taken into account whereas for very
small friction the number of iterations may be very large. The matrix continued
fractions seem to converge even for very small damping constants. For very small
friction one may use energy as a variable (Chap. 11, Sects. 4, 8.1, 9.1). Analytic
expressions for matrix continued fractions are obtained only for special cases. In
App. A3 we evaluate G, o(¢) for the harmonic oscillator; in this chapter we derive
an explicit result for G o(¢) for free Brownian motion from the general solution
(10.139 —143).
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Free Brownian Motion

For free Brownian motion both D and D are equal to the differential operator
vy, 0/0x. For a position-independent damping force all matrices in the continued
fractions commute. We may therefore formally treat the matrix continued frac-
tions as ordinary continued fractions. For GO,O(S) we then have (D = D=
vy, 0/0x) in x representation [see (10.180) for a general expression for Ky(s)]:

Go,o(x,x",8) = [s — Ko(s)] ' 6(x—x")

with

2 2
[s—Ko(s)] = lj_ D7j_ 2D —. . (10.148)
s S+y s+2y

By introducing the notation
a=pB+s/y, B=-DYy*, (10.149)
(10.148) may be written as

;zii 1
s—Kots) 7 {Ja—p

It follows from [Ref. 9.1, Sect. 48, Eqgs. (23, 26)] that the continued fraction in
the parenthesis is equal to

I+ A I+ 2B I+ (10.150)
Ia—ﬂ+1 |a—ﬂ+2

1 -3 .
1= eﬁge’ﬁ“u“”du =y (j)exp(ﬂ—ﬂe""—ayt)dt
=ylexp[B(1—e " —y))e ¥dt. (10.151)
0

In the second step we made the substitution u = exp(— y1).
Thus we have

Go,o(x,x",8) = S:exp[Q(t)]e_S’dté(x—x’) (10.152)
with [see (10.189) for definition of H>)

Q1) =D*(yt—1+e ") /y*= D *Hy(y1)/y*, (10.153)
and the inverse Laplace transform of GO,O(x,x’,s) is given by

Go,olx,x', 1) = exp[Q(D)] d(x—x")

= exp[vtzh(a/ax)sz(yt)/yz](2 n)~! }O explik{(x—x")]dk

=Q2n)" ! | exp[— vik2Hy(yt)/y*+ik(x—x")]dk
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2 N2
Y yx—x") >
= —f _exp| - "7 . (10.154)
2vq )/ nHL(yt) < 4H,(yt) vtzh

This result may of course also be obtained in the usual way, i.e., by taking the
average of the transition probability (10.55, 67, 68) for free Brownian motion
over an initial Maxwell velocity distribution and by integration over the final
velocity

Go,o(x,x", 1) = {§P(x, v, ¢|x",v",0) exp[— v’ ¥/ (2v}))/()/2 T vg)dodo’ .
(10.155)

From the first line of (10.154) it is easily seen that G, o(x,x’, ¢) is a solution of the
time-dependent Smoluchowski equation

C.;0,0 =Lo(t) Gy

L, ., o (10.156)
Lo(t) = @ = D*y 2dH,(y1)/dt = v2(8/0x)2(1 —e™ ")/ y

with the initial condition (10.134), a result also well known in the literature
[10.3—-5].

10.3.2 Eigenvalue Problem

As we have seen, Brinkman’s hierarchy (10.46a), which is equivalent to the
Kramers equation, can be cast into the tridiagonal vector recurrence relation by
using expansion (10.129). We are now looking for eigensolutions of the Kramers
equation, i.e., for solutions in which the expansion coefficients are of the form

cd(t)=¢de M, (10.157)

We now write é7 again as the column vector é,. By eliminating all é, with n + m
we arrive at the homogeneous relation

Al—myl+ K, (—\))ép=0 (10.158)
and the eigenvalues follow from, see (9.119),
D (1) =Det[AI—myIl+K,(-1)] =0. (10.159)

The eigenvectors é,, follow from (10.158) and the other eigenvectors are then
determined by

én=U, (= 1)Ep. (10.160)

Because of (10.43, 129) the eigenfunctions y; of Lg then have the form

va(x,0) = wov) expl—ef()/vh] ¥ ¥ c97(x) wo(v) . (10.161)

n=0 g
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As mentioned in Sect. 9.3.2, any D,,(1) with m=0,1,2,... may be used to
determine the eigenvalues A. For the stationary eigenvalue A = 0 and its eigen-
solution of the Kramers equation, however, the index m must be equal to zero
because S,,(0)(m =0) does not exist. For large damping constants it may be
advantageous to use D,,(A) for those eigenvalues where K,(—A) is small
(Sect. 10.4). Because the Fokker-Planck operator Ly or the transformed
operator Ly are not Hermitian operators, the eigenvalues A are generally
complex. To find the eigenvalues 1, D,,(4) has to be calculated and the roots of
D,,(A) = 0 have to be found with some complex root-finding technique. In Sect.
11.9 this method is applied to the Brownian motion of a pendulum.

Normalization

Because neither the Kramers operator Lg nor the transformed operator L=
Loy+ L;; are Hermitian operators, we must also find the eigenfunctions of L§ or
equivalently of L to form a biorthogonal set. For ¢ = 1 we have (10.21, 26)

Li(x,0)=Lg(x, —v). (10.162)
Thus the eigenfunctions T(x,v) of L with eigenvalue 4 are simply obtained
from those of Ly with the same eigenvalue A by replacing v by —uv, i.e.,

Wi (x,v) = @;(x, —v). Because of the transformation (10.25) and because of
(10.38), the connection between the eigenfunctions w; of L§

L{yi(x,v) = —Ay] (x,0) (10.163)
and those of Lg may be written as [N is the normalization in (10.49a)]

wi @ 0) = N~ lwo(0)] > explf(x)/of] watx, —v). (10.164)
The function in front of y, is the inverse of the stationary distribution (10.49a)
divided by the normalization constant in (10.49a). For ¢ = 1 the normalization
reads

1= {fwi @ 0)yxv)dxdo

= N7 {§ [yo(@)) "2 exp [f(x)/ 0] walx, v) walx, —v)dxdo.

Inserting (10.161) and using (10.41) and y,(—v) = (—1)"w,(v) we finally have

N=

n

ek
S~

-1D)"Y Y clchfoix) pP(x)dx. (10.165)
0 q p
Symmetry Relations

If the potential is symmetric [f(x) = f(—x)], i.e., if the force is antisymmetric
[f' (x) = —f'(—x)], and if the boundary conditions are also symmetric in x, we
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conclude form Lg(x,v) = Lg(—x, —v) that the eigenfunctions must be either
symmetric or antisymmetric

ws(x,v) = Ty (—x, —v). (10.166)
a a

10.4 Inverse Friction Expansion

For large friction constants one may neglect in (10.1) the second order time deriv-
ative. The corresponding Fokker-Planck equation for the Langevin equation

yX+f'(x) = I() (10.167)

with the Langevin force of (10.1) is called the Smoluchowski equation. This
equation for the distribution function W(x,t) for position only reads

X (10.168)
i kT 9
Ls=——f( )
y Ox my 9x*

Equation (10.168) may be derived from the Kramers equation (10.3) as follows.
If we truncate system (10.46a) after the second n =1 term (i.e., c;=¢c3 = ... =0
and omit the equations with »n = 2), (10.462a) reduces to

9cy/0t+Dc;=0
L~ (10.169)
DCO+ 601/6t+ Y= 0.

For large damping constants y we may furthermore neglect the time derivative
dc,/0¢ in the last equation, and by eliminating ¢, and putting & = 0 obtain the
Smoluchowski equation (10.168)

aCO/atz —DC1 = y_iDﬁCO

1 i<f,+ ,,ghi> (10.170)
y Ox 0x
where
Colx, 1) = { W(x,v,t)dv (10.171)

is the distribution in position only (10.44). If we do not neglect the time
derivative dc, /98¢ in the last equation of (10.169), by eliminating ¢, we obtain an
equation with a first and second order time derivative

8%¢y/ 812+ y0cy/Bt = v50%co/0x*+ B(co f')/ Bx (10.172)
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derived by Brinkman [10.1], as a Laplace transform of (10.172), and by Sack
f10.6]. Without the force —f’ (10.172) reduces to the telegrapher’s equation

8%¢cy/0t2+ ydcy/dt = v3,8%¢co/0x2. (10.173)

At first glance (10.172) seems to be preferable to (10.170) for the following two
reasons. (i) In deriving (10.172) we did not neglect the time derivative 8¢, /¢ as
was done to obtain (10.170). (ii) Because (10.172) is essentially a wave equation
(hyperbolic differential equation), a change in the particle density ¢, cannot travel
faster than the thermal velocity vy, = |/kT/m, whereas in the Smoluchowski
equation (10.170) a change in particle density is present immediately afterwards
at a finite distance (though it very strongly decreases with increasing distance).
First we want to discuss that the last argument does not hold at second glance.

If one starts with a Maxwell distribution for the velocities it is not surprising
that some change in particle density travels with a large speed because some
particles have very large velocities according to the tail of the Maxwell distribu-
tion. Even had we started with the velocity distribution 6(v) (i.e., where the
particles have zero velocity), the distribution function W{x, v, ) would then have
a finite (though very small) value for large velocities immediately afterwards.
Thus a finite limit velocity (as in electrodynamics or in hydrodynamics) for the
propagation of a disturbance does not exist in the case of Brownian motion
because, due to the assumptions of the Langevin force, a momentum transfer of
every size is possible.

The first argument does not hold either, as it is best seen by treating free
Brownian motion, for which the telegrapher’s equation can be solved exactly
[10.7}. Assuming that initially the particles are at the position x = x’ and have a
Maxwell velocity distribution, i.e.,

Cn(x,0) = 3(x—x") S, (10.174)

the solution of the Kramers equation (10.3) integrated over the velocity or of
(10.464a) is given by [see (10.154)]

co(x, 1) = Qow/y) [nHy(y1)] V2 exp{— yHx—x")/[AH, (p1) v5]1},
Hy(yt) = (yt—-1+e7 7. (10.175)

The solution of the telegrapher’s equation (10.173) with ¢y(x,0) = d(x —x') and
dco(x, 1)/8t ;o= — Dcy(x,0) = 0 is, according to Hemmer [10.7], given by

colx, 1) = %e*ym {MX_X, —vpl) + Ox—x"+vyt)

+@(vtht—|x—x’|)[ Y IO<2” |/vfh12—(x—x')2>

2oy, Uth

+ vt 11< 4 ufhtz—(x—x')2>B. (10.176)
2 vtzhtz—(x—x’)2 2oy
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In (10.176) 1, and I are the modified Bessel functions and ©(x) is the Heaveside
jump function [O(x) =1 for x>0, O(x) =0 for x <0]. Using the asymptotic
expansions of the modified Bessel functions

To(x) = I1(x) = 27x) ~'%e”, (10.177)

one easily verifies that for large values of time (y#>1, vyt [x—x'|) both
(10.175, 176) approximately agree with the solution of the Smoluchowski equa-
tion (10.170) for f’ = 0 with the initial condition c,(x,0) = §(x—x'),

colx, 1) = |/ y/(Arvit) exp[ — yx—x")/(4vd 1)) . (10.178)

As seen in Fig. 10.2, the solution of the telegrapher’s equation seems a little
awkward for a distribution function, mainly because of the §-function peaks. It
should, however, be mentioned that both distributions (10.175, 176) have the
same mean value ¢x) = 0 and variance (x?) = 203 H,(y1)/y>. [The variance of
(10.176) is best calculated by first deriving an equation for the variance directly
from the telegrapher’s equation (10.173) and then solving it.] Though the
solution of the Smoluchowski equation does not have the correct variance, it
resembles the exact distribution (because both are Gaussian) more than (10.176)
resembles the latter.

Because of the J-function peaks [which appear because we have not neglected
the time derivative in the last equation of (10.169)] Dc¢; = — 8¢,/8¢ must have an
infinite large value, where the §-function peaks occur. As seen from the third
equation of (10.46a), ¢, and ¢; then cannot both be considered small. Therefore
not neglecting the time derivative in the last equation of (10.169) is inconsistent
with the truncation of expansion (10.43) after the ¢; term, i.e., putting
¢, =¢3=...=0. In the case of the Smoluchowski equation, 8cy/8¢ is of the
order y 1, ¢, is then of the order y~*and ¢, and higher coefficients may therefore
be neglected for large y.

We now want to derive (10.168) and its correction terms for the high-friction
case in a more systematic way. Starting with the general solutions (10.139 — 143)
we will show that the Smoluchowski equation and its correction terms can be
obtained by expanding the matrix continued fractions in powers of y~!. The
great advantage of this procedure is that no inverse matrices (in ¢ representa-
tion) or operators (in x representation) will occur. The disadvantage of this
procedure is that through expanding the denominators, the inverse friction
expansion converges only for friction constants which are sufficiently large. For
a harmonic potential (10.52) the region of convergence is given by y > 2w,. For
other potentials it may be valid only in the asymptotic limit y — oo (Sect. 11.9).

10.4.1 Inverse Friction Expansion for Ky(z), Gy, o(¢) and Ly(t)

We first look for a solution of the Kramers equation where the initial distribution
is the product of a Maxwell velocity distribution times the ¢ function §(x—x"). If
we integrate this distribution function over the velocity, for & = 0 this function is
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Fig. 10.2a—c. The exact solution (10.175) (full line), the solution (10.178) of the Smoluchowski
equation (broken line) and the solution (10.176) of the telegrapher’s equation (broken line with dots)
as a function of x for three different times. The value of the probability p to find the particle at the
J-function peak is indicated by the length of the vertical line
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identical to the Green’s function Gy o(x,x’, f), see (10.137). The solution of the
Kramers equation, where the distribution function factorizes at time 7 = 0 into a
Maxwell velocity distribution and an arbitrary position-dependent distribution
co(x, 0), can be expressed by the Green’s function according to (10.43, 133). The
distribution integrated over the velocity is then expressed by

§Wx,v,0)dv = co(x, 1) = [ G 0(x, X", £) co(x',0)dx" . (10.179)

The Laplace transform of this Green’s function is given in matrix notation by
(10.139)

Go,o(s) = [sT-Ko(s)] ', (10.139a)
where according to (10.140, 142) K(s) is given by the infinite continued fraction

Ko(s) =D[(s+y)I-2D[(s+2y)I-3D[(s+3y)I-...1"'D1"'D]'D.
(10.180)

For large y the continued fraction (10.180) is easily expanded into powers of y~'.

(The variable s is also assumed to be of the order y.) The result up to the order
-5
y~” reads

Ko(s) = 5+9) " 'DD +2(s+y) X(s+2y)"'D*D?
+6(s+y)"Xs+2y) As+3y)~'D3D3
+46+y) 3s+2y) DD D+0oH ). (10.181)

The inverse Laplace transform of (10.181) is the expansion of the memory
function

Kyt)=e "DD+y 2Qyte ""=2e " "+2e ?)D?P?
+y HByte "' —(15/2)e '+ 6yte "
+6e 2"+ (3/2)e DD
+2(p1)%e " —8ypte "+ 12e

—4yte " 122 DWD DD+ Oy~ °). (10.182)

With this memory function the solution Gy (¢) may be determined by
. t
Go,o(t) = [Ko(t— 1) Gy o(1)dT. (10.183)
0

For large y the memory function rapidly decreases in time. Using proper partial
integrations we may express (10.183) as
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t

. T tT .
GO,O(t) = gKo(t— TI)dT’GO’O(T) - ggKo(t— T’)dT’Goyo(T)dT
0

= E‘)Ifo(t— T)dTGO’O(t)

t T T
- [§K0(l— 7)d7’ [Ko(t—1"") GO)O(T”)dT”j| dr. (10.183a)
o| 0 0

Because of the rapidly decreasing memory functions the last expression is much
smaller than the first, and we may thus approximate (10.183) by

Goo(t) = LY (1) G o()
(10.184)

LY@ = §K0(t—‘r)d‘r= y‘l(l—e_yt)Dﬁ+... .
0

Thus we see that in the first step we simply replace Gy o(7) by Gg o(¢) in the
integral equation (10.183). This corresponds to the first Born approximation in
the scattering theory of quantum mechanics. In this first step it is inconsistent to
use expansion terms of (10.182) of the order y ~2and higher. In the next approxi-
mation we replace G o(7"') in (10.183 ) by Gy ¢(?), so obtaining

LY = jtKo(t— 7)dr— § [ TKO(t— tydr’ iKO(‘L'— r”)d‘r”} dr
0 ol 0 0

=y ld—e"YDD+y (1 -2yte - e P\D[D,D]D+...,
(10.1842)

which is already the beginning of the desired inverse friction expansion for the
operator Ly(¢). In the first term on the right hande side of (10.184a) the expan-
sion of K, up to the term y~? must be used. The next iteration step is much more
complicated because we have to perform a double partial integration to extract
Gy,o(?) from the last expression of (10.183a). We therefore try to obtain first a
formal expression for Gy o(¢) directly from (10.139a, 181). To do this we write
GO,O(’) as

Go,o(2) = exp[2(1)], (10.185)
and try an expansion of £(¢) in the form
QO =y 2 () +y Q)+ y SRy +... . (10.186)

Note that £, and higher terms must contain only commutators of D and D
because for commuting D and D the expansion (10.186) terminates after the first
term, compare (10.153, 154) for D = D. Because

Goo(s) = [sSI—Ko(s)] "1 =57 I+572Ko(s) +s 7 Ki(s)+5 *Ki(s)+... (10.187)
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the inverse friction expansion of GO’O(S) is also easily found. By an inverse
Laplace transformation we then get Gy o(?). (To obtain the explicit expressions
for the various inverse Laplace transforms, the reader should consult App. Cand
D of [7.7], where all the necessary transformations can be found.) Next we
expand the exponential function (10.185) with € given by (10.186) and compare
the terms of equal powers of »~!. The final results of these lengthy calculations
are

(o) = Hy(6)DD
Q,(0) = Hy(o)D[D,D1D

(10.188)
Q4(0) = 2[H{(0) + HY ()] DID,D1*D
+H{"(a)D{[D,[D,D11D - (1/2)[DD,[D,D1}D ,
where the functions H,, are given by
Hy(6) =6—1+¢°°
Hy(o) =0-(5/2)+20e “+2e 9+ (1/2)e”2°
H{(0)=(1/2)0-(5/3)+30e~ 7~ (3/2)e "+ (3/2) 5e " 2° (10.189)

+3e727+(1/6)e 37

HP(0)=(1/2)0 -2+ 0% °+4e~7—(1/2) e 2°—2¢2°,

It is now easy to find the generalized Smoluchowski operator Ly(1), i.e., the
operator of the equation

Go,o(t) = Lo(t) G o1) . (10.190)

Following Weiss and Maradudin [10.8], we first introduce the symbols {1 defined
by

w,x% =u, .
10.19
{u,x"} = [{u,x""},x] , n=x=1, ( )

where [4, Bl = AB— BA is the commutator. Equation (3.20) of [10.8] reads

Lo(t) = {Q, 1—exp(—!))}

Q
=0-(1/2)[Q, 21+ (1/6)[[2, 2], 2] F... . (10.192)

Inserting (10.186, 188, 189) into (10.192) we finally obtain
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Lo(t) =Dy~ ' hi(yt)+y*hs(y1) D, D]
+y ROy t) + kP (y) D, DT
+ (0D, D, DD + K@ (y1)IDD,[D,DIND+0(y ™) .

(10.193)
The functions 4, are given by (d/do) H,1(c) and read explicitly:
h(o) =1-¢7° =0o+...
hy(o) =1-20e %—¢ 7 =203 +...
n$(o) = (1/2)-30e~°+(9/2)e °~3ge™*° (10.194)
—(9/2)e"27—(1/2)e3° =60/5!+...
hP(c) =(1/2)—c%e “+20e 7—4e™°
+oe 204 (1/2)e"° =26/5!+... .
In deriving (10.193) we used the relationship
hyHy—hiHy= Y+ 219 . (10.195)

Up to the term y 3 (10.193, 194) agrees with (10.184a). In the x representation
with & = 0 the commutators are given by

[D’ﬁ] =f”; [D’[DsDA]]zvthf/”

R ) (10.196)
(DD,[D,D]] = v3f W™+ " Qo a/0x+f") -

It should be noted here that the distribution (10.179) also obeys (10.190). For
large times y > 1, (10.193) reduces in the x representation for ¢ = 0 to

o (1 1 1 1 3 3
Lo(®) = ) —+ —f" + — [ 27"V + — 0 f ™+ - 0h /" —+ "
Oax(y vy y 2 2 ox
X <v?hi +f’> +0(»7). (10.197)
Ox

One may object to the occurrence of the third-order x derivative in (10.197)
because, due to Pawula’s theorem (Sect. 4.3), the transition probability must
then have negative values for sufficiently small times. As shown in Sect. 4.6 fora
simple example, however, the negative values may be very small and the devia-
tions from the exact distribution may be much larger for the distribution func-
tion following the truncation after the second derivative term than for the dis-
tribution function following the truncation after some higher derivative terms.
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Equation (10.197) was derived in [10.2, 10.9] and up to the term y~3 in
[10.10—-12] by different methods. Equations (10.193, 194) were obtained in
[9.19] by using the expansion of the continued fraction, and up to the term y~3in
[10.13] by using van Kampen’s ordered cumulant expansion [10.14].

Application to the Parabolic Potential

To check the validity of expansion (10.193) we compare it to an exact Ly(¢). For
the parabolic potential (10.52) the transition probability and therefore also
Gy o(x,x’, ) can be calculated exactly. [For free Brownian motion, the commuta-
tors in (10.193) vanish and the first term of the expansion already agrees with the
exact result (10.156) for £ = 0.] By taking the average of the transition prob-
ability (10.55) over a Maxwell distribution for the initial velocities and by integra-
tion over the final velocity we obtain (see also [10.12])

2 2
(x—yx')
GO)O(X,X', t) = $—exp <_ wo——> ’
v/ 27(1—y%) 2(1-yH o},
() = (A~ M= e MY /(4 - 4y), (10.198)

A% =(y+ l/ y2—4w(2,)/2 .

e = i o o — o 20
o e i

yt—

Fig. 10.3. The exact solution (10.199) (solid line) and the three different inverse friction expansions
(broken lines) according to (10.200) as a function of y¢ for 2wy/y = 0.7
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As may be checked by insertion (10.198) satisfies (10.190) with L () given by

L0 =hynLt 2 (022 4 wix
y Ox Oox
(10.199)

R (pt) = = ypp/(y p) .

This exact result has to be compared with (10.193) for the case of a harmonic
potential with [D,D] = w} (see 10.28) and where all the double commutators
vanish, i.e., with

1 3 o]
Lo®) = h(yt) — — <vt2h_ + w%x)
y Ox ox
(10.200)

h(y1) = hi(p1)+(wo/ ¥)>hs(y 1) +(0/ ) 2[HD () + B (O] + ...
A comparison between h(yt) and £ (y¢) is shown in Fig. 10.3. It is seen that
even for 2wy = 0.7 y the approximation is very good. A closer inspection shows
that (10.200) is an expansion of h®™(yt) into powers of the inverse friction
constant. If should be mentioned that in the underdamped case y < 2 wy, ¥(¢) has
zeros and the exact Liouville operator does not exist. For a discussion of cases

where Lo(t) does not exist, see [10.15]. In the underdamped case y <2 wo,
expansion (10.193) does not converge for any time 7> 0.

10.4.2 Determination of Eigenvalues and Eigenvectors

The eigenvalues and eigenvectors are determined by (10.158, 159). For large
friction the eigenvalues are grouped together according to

Amv=my+An,,, (10.201)

where A,,, is of the order y~1. To determine A, therefore (10.159) is most
suitable. By expanding K,,(— 4,,) in powers of A, we obtain (suppressing the

index v)
2
A,,,+i 4 K,.(5) At |
2 \ ds s=—my

=0. (10.202)

N

[Amlu?m(—my) _ di Z.(5)

s=—my

We now eliminate 4,, in the third term and A2, in the fourth term iteratively

AWE, = K (-my)é,

A9¢, = - [I?m(— my) + Ed—l?m(s) Kn(— my)} s
S

s=—my
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leading in the third approximation for 4,,=my + A9 to (not suppressing v)
Amd+Ly)Ep, = 0, (10.203)

where L, is given by

2
L= —myl 4 Bo(—my)+ L Ro)|  Bn(-mp)+ |- Ks)
ds s= —my ds s= —my
. 1@, . ,
X B~ my) + — K p(s) Ko(—myP+... . (10.204)
2 ds s=—my

Using (10.204) for m = 0 and the inverse friction expansion (10.180) for I;’O(s) we
obtain the operator (10.193) for large times y¢ > 1. Thus in x representation with
£=0, Ly= Ly(o) is given by (10.197). For the general case the expansion terms
up to the order y 3 read

L,=—-myl+y '(m+1)DD—-mDD) + y~*[(1/2)(m+1)(m+2)D>D?
—1/72)ym(m—1)D D>~ (m+1)>(DD)*+mm+1)DD*D-DDD)
+ m¥(DD). (10.205)
In the x representation with & = 0, (10.205) agrees with the operator (4.2) of [Ref.
10.2]. (In (4.2) of [10.2] a factor 1/2 is missing in the term proportional to m—1.)

The other eigenvectors é&,, still having eigenvalues near m y and which are
therefore termed ¢, ,,,, follow from

én,mvz ljn,m(—lmv)ém,mv- (10.206)
By performing a procedure similar to that used previously, we obtain

én,mvz Vn,mém,mv
5 d - (10.207)
Vam= Un,m(—my)+EUn’m(S) Lyu+myD+... .

s=—my

Evaluating the continued fractions (10.142, 143), we obtain the inverse friction
expansion of U, ,,(s) (10.141) and of its derivative at s = —m y. The final result
is expressed in a more compact form if

— 1 =

0 = n+1D for nz=0
0 n=s -1

(10.208)

0, = {‘l{)ﬁD for nezl
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are used (10.130). The result at least correct up to y~*is (n=0)

Vn¢4,n = y_4(4!)_1Q;—'¢4Q;—'¢3Qni¢2Qnii1

Vazan= T 2317 10:230:5:05
Vizzn =7 2(1/2)Qn7:051
+y "/ D07+20,5107520+1
+(1/3) 0752075307520 +1
+307520:51(07 @1 — Qrf Qiz1))
Vaztn= T Qi1 7y 1(1/2) Q7510552051
+ 075107 Qre1— Q@ Qiz1)]
Vor =1. (10.209)

Up to a normalization constant, (4.1) of [10.2] agrees with (10.209) in the x
representation for ¢ = 0. [In (4.1) of [10.2] the last term in the third line from the
bottom should read (3/2)(2 n—1) B instead of (3/2)(n—1)B.]

With the help of (10.208), (10.205) can be written as

L,=-myl+A,)-A,,
An=y10507 1 +y 1/ QEQ105.200 41
(2 0ms1)+0505.1070%4]. (10.205a)

10.4.3 Expansion for the Green’s Function G,, ,(¢)

The expansion for G o(¢) (10.185, 188, 189) cannot be used for other diagonal
G, m(f), as can best be seen by discussing Gy 1 (¢). The exact solution for G, ;(s)
reads:

G1,1(9) = [s+NI-Ki() ', (10.210)
Ki(s) =s"'DD+2D{(s+2y)I-3D[s+3y)I—...]"'D}"'D. (10.211)
The inverse friction expansion of (10.211) and its inverse Laplace transform is
given by
DD D*D?

K (s)= 1 pp+2 +6 . o, (10.212)
s s+2y (s+29)(s+37y)

Ki((t)y =DD+2e""'DD+6y (pte 2" —e 21 e3"yD2P2y ... .
(10.213)
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Notice that the memory kernel does not vanish for large times [K;(o) = DD].
We therefore cannot use the Born approximation for solving the integral
equation (10.139a) with m =1, as done for (10.183), and we cannot derlve an
operator L,(¢) for Gy ;(¢). Obviously the troublesome term in K (s)is s~ DD,
which also occurs in other memory functions K, m(s) for m=2.

For very small s (s of the order 1/y) i.e., for large times (t of the order y), this
term becomes important and the inverse friction expansions for G, ,,(s) do not
exist for m=1.

To find a different inverse friction expansion method we proceed as follows
[9.19]. We first consider solutions of the tridiagonal recurrence relation

Ci=0yCr1—yNCy+QnCpiy. (10.214)

If the damping constants y are large, the eigenvalues of (10.214) are grouped
together according to (10.201). Let us consider solutions of (10.214) called
¢, m(t) which can be expanded into eigenfunctions of (10.214) belonging to the
group of eigenvalues with the main part my, i.e.,

Crom(t) = L Byl e (10.215)

where b,,, are the expansion coefficients. In the x representation these solutions
correspond to the solutions Py, in [10.2], though no connection with the eigen-
values was made there. From (10.203, 207) it is seen that ¢, ,,(#) must satisfy

Cnom = Va,mCmm (10.216)
and

Cmm=LmCpm- (10.217)
A formal solution of (10.216, 217) is given by

Cnml(t) = Vo, mCo () = Vi, € ' C . i (0) . (10.218)

A general solution of (10.214) is obtained by summation over all different m:
ewlt)= ¥ Cam®) = L Vme ™ Cpm(0). (10.219)
m=0 m=0

The initial values c¢,(0) of the general solution (10.219) and the initial values
¢m, m(0) are connected by

(= 3 Frnenn@ (10.220)

Note that c,(0) are column vectors and that ¥, ,, are matrices. We can, however,
proceed in formal analogy to linear algebra and invert (10.220) by
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Cm,m(0) = Zoﬁm,rcr(o) > (10.221)
re
where the “inverse” matrices Vm - must fulfill the relation

ViotVenr =16, (10.222)
0

Tras

Because V,,, ,, = I and the other ¥, ,, with n # m are at least of the order y~!, Vorr
may be determined iteratively:

nm“Iénm m+EA A

- YA, A At £ ApAsAgA ... , (10.223)

st

Aym=Vym for nxm, A,,=0.

The explicit calculation of the inverse friction expansion is a little cumbersome.
The final result written in terms of Q. (10.208) reads
Vazan=7""4)7"'01240%5:05,05,
wran= 29 BN T 053055205
w20 =7 21/ Q205
+ 7 /D [Q552055105 Qi1+ (1/3) 02051 05 O
+ 07 52055307520071— 505720751 055:05554] (10.224)
ozt = 277 Quz1 2y 11/ 0551 05 @51~ 2055107 0551
Vo =1=772Q7 Q-1+ 0, Q711)
— 7 40y Q10 Qi1+ 07 054105 0,
+0, 15/ 0,10, 230,102,109,
+ Q7 [(5/4011107:2-307:10,10, .4}

NN

This result is at least correct up to terms of the order y~* Elements not written
down are zero up to this order. As one may check, also the relation

f I7n,me,rzlénr (102223)

holds up to this order.
By inserting (10.221) into (10.219) we obtain immediately the expression for
the Green’s function of system (10.214) (changing the notation of the indices)
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)= T GpmD)en©®),  Gpmlt) = ¥ V, b T, .. (10.225)
m=0 0

r=

This, together with inverse friction expansions (10.205, 209, 224), is the desired
expansion of the Green’s function. It has the formal analogy of an eigenfunction
expansion of the Green’s function though in x representation the “eigenvalues”
L, and “eigenfunctions” V,, ,, 17,,,, are operators with respect to x. This analogy
may be developed a little further. If we write (10.214) as

€h=YL,mcp (10.214a)

(Lpp=-nyl; L, ,.1=Q.,L, {,=0,, others are zero) the formal solution
with the initial value 14,,, is given by

Grom(t) = (€ pm=T+ Lyt + % YL, Lmti+... . (10.226)
N
By comparison with (10.225) for small r we find
Ln,m =X Vn,rLrVr,m (10.227)

in analogy to the spectral decomposition of an operator. (Using (10.205a, 209,
224) the first terms of this relation may be checked.)

Equivalence of (10.225) for n = m = 0 with (10.185)
Before we discuss (10.225) and derive an expression for the Green’s function in x
representation, we want to show that for n = m =0 (10.225) agrees with the
Green’s function Gy, o(¢) derived previously. Taking into account terms up to the
order »~* only, we write (10.185, 186, 188, 189) in the form (o = yt)
Go.o(t) =exp{y Ho—-1+e )DD+y *[c—(5/2)+2ae °+2e°
+(1/2)e"%°1D[D,D1D}
~exp[(y"'DD+y>D[D,D]1D)t] exp{y (- 1+e °)DD
+y - (5/2)+20e 7 +2e"°+(1/2)e"2°|D[D,D]1D}. (10.228)
In (10.228) we factorized the exponential function which is correct for terms up
to the order y~*. In the first exponent we may write Lyt, where L is given by

(10.205) for m = 0. The expansion of the second exponent up to the terms of the
order y~*leads to

G o(t) =e'I-y’DD +y % °DD
+y Y =(5/2)+20e °+2e "7+ (1/2)e " 2°| DD, D] D
+(1/2)y 41 -2e +e"2%)(DD)*}
= G+ GEY) + GEY(1) (10.229)
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with
GOt = eI —y2DD +y~*[ - (5/2)D[D,D1D + (1/2)(DD)*1}
Gl ="y 2 DD +y 412D~ 3@ D)1+ 2y *DID,DID - 1}
GEN(0) = e L(1/2)y 4D D2, (10.230)

Equation (10.229) is the expansion (10.225) for n=m = 0. The first term in
(10.230) is identical to

GE(t) = Ie" T—y 2 DD +y *[3(DD)*— (5/2)D*D?1} = Vy e’ Wy,

as is immediately seen. The third term may be approximately written in the form
GOt = 2-V2y " 222l 12,-2[52 o Voela! iy .

In this small term ~y~* we need only the first term for L,, Vi, V0. Because

eldD =~ exp(y " 'DDt)D = Dexp(y 'DDt)

we write the second term up to the order y~*as

G§)(t) = y D expl(— yI+y 'DD)t1d +y~'2[D,D]1)
x [[+y 22DD-DD)(y"'D-2y~*DDD).

The first bracket is taken into the exponential function which gives the exponent,
see (10.205)

(—yI+y~'DD+y~12[D,D))t=Lyt.

The second bracket is put in front of the exponential function (the commutator
would lead to terms of the order y~°) and we thus finally have

) _
GEN(t) = Vo™ ¥y .

Green’s Function in x Representation

In the x representation, the Green’s function of Brinkman’s hierarchy (10.46a) is
given by
G s x's 1) = XV, eV, 0(x—x") (10.231)
r=0
where the operators V, ., I7,,m,AL, are obtained by inserting the differential
operators (10.27) for D and D. The transition probability of the Kramers
equation then takes the form for ¢ = 0 (10.145)

P(X, U,t|x’: U,’ O) = W—O(U,)— § l//,,(U) l//m(v,) Vn,reLrt I7l',mé(x_x,) ‘
Wo(v') mmr=0 (10.232)
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The distribution in position only is obtained by integrating (10.232) over velocity.
Because of (10.41) we have

Py(x,t]x",v',0) = {[P(x,0,¢]|x",v",0)dv

= T W@V ol Vo €'V, de-x") . (10.233)

m,r=0

For large times yf>1 only the term with r=0 survives in (10.232, 233).
Equation (10.233) may then be written as (V; o= 1)

Py(x,]x',v',0) = ebo! iolwm(v')/u/o(v')l Vom(x—x'), (10.234)

which shows that for large times P, is a solution of the Smoluchowski equation
Py=LoP, (10.235)

with the initial condition
Po(x,0|x",v",0) = Eolu/m(v’)/t//o(v’)] Vomd(x—x'). (10.236)
Therefore, for yt> 1, P(x,v,t|x’,v’,0) can be expressed by

P(x,v,t|x',v',0) = yo(v) § Wa(0) V, o Polx, t|x',0',0) . (10.237)
0 .

n=

Thus, the distribution of the slow variable x completely determines the distribu-
tion function of the fast velocity variable for times much larger than the relaxa-
tion time 7=y~ ! of the velocity. If we start with a distribution function which
factorizes into a Maxwell distribution and a position-dependent distribution
W(x,v,0) = y§(v) g(x,0), (10.238)

the distribution W(x,¢) in position only may be obtained for large times as a
solution of (10.235) with the initial distribution

W(x,0) = V5 09(x,0), (10.239)
where ¥, ¢ reads explicitly (10.208, 224)

Voo=1-y"*DD+y Y3(DD)*-(5/2)D*D?} +... . (10.240)
[As initial condition we may use g(x,0) = d(x—x') in (10.238).] From (10.232) it

is seen that for yf>1 the distribution in the velocity-position space can be
expressed by the distribution W(x,t) in position space only
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Wx,0,0) = T wo®) wa(®) Voo Wk, 1) (10.241)
n=0

If fast variables are eliminated an initial slip of the distribution function of the
slow variables similarly to (10.239) occurs [10.16, 17].

The joint distribution W, is the product of the transition probability (10.237))
and the stationary distribution (10.49a). For y¢ > 1 we thus get

Wy(x,v,tx',v',0)

= T (o) Ya®) Vo) Yinl0') Vo€ o N expl =/()/0%] . (10.24)

With this joint distribution any two time correlation functions can be calculated
by integration (7.12). Using (10.41) and v yo(v) = vy, wy(v) the two-time correla-
tion functions of position and velocity read for instance (y > 1)

x(t)x(0)y = Nfxelo'V, oxexp[ - f(x)/vildx, (10.243 )

o ()v(0)) = VANV, g0V sexp[— f(x)/vi]dx . (10.243b)
The explicit results for the operators V and ¥ are given by (10.240) and

Vie=y '1+y DD-DD)D, (10.2442)

Vo1=—y 'DI1+y *(DD-2DD)]. (10.244b)
Expressions exp(L?) - h(x) occurring in (10.243) may be obtained as solutions
of the Smoluchowski equation (10.235) with the initial condition A (x).

For the harmonic oscillator f(x) = w3x*2 the commutator (10.28) is

constant i.e. [D,D] = w}. Because exp(DDa)D = D exp(— wja) exp(DD a),
x = v4(D— D)/ w} and D exp[— f(x)/v3] = 0 we obtain up to the order y 2

2
x(1)x(0)) = 28 (1 + wy/y?) exp [~ (@§/y) (1 + wb/y))1] (10.2452)
Wo

() v(0)) = “‘“’0 exp[—(wd/p)(1 + 0¥/ )] . (10.245b)
y?

These correlation functions agree with G, (f) gx() (10.61, 64) and
with (10 101) respectively for y>2w, and pt>1 [A1=y— W/ y, Ay = (wh/7)
x (1 + wd/y*). The correlatlon function (x(¢)x(0)) of the slow variable x shps
from its initial value v /w3 at t=0 to the shghtly higher value (v h/ w})
x(1+ wo/y ) for times ¢ in the range 1/y <t < y/w3. In contrast to this result
the correlation function (v (¢)v(0)) of the fast variable v shows a sharp transition
from the value v3, at ¢ = 0 to the value — v3 wi/y?slightly below zero for times in
the above range.
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10.4.4 Position-Dependent Friction

For position-dependent friction y(x) the matrix continued fraction for K, o(s) cor-
responding to (10.180) has the form

Ko(s)=DI[sI+y-2D(sI+2y—...) 'D17'D, (10.246)
where the matrix y has to be calculated _according to (10.131) with 4 = y(x).
Because y does not commute with D and D, some care must be taken in doing the

inverse friction expansion. If A4 and B are matrices which do not commute, we
have for small ¢

[A—¢Bl '=A"'+A-1¢BA 1+ ... . (10.247)
This may be checked by multiplying (10.247) with the matrix in the bracket.
The expansion of _(10.246) for the first two terms is [4 =s+y,
EB=2D(sI+2y) D]

Ko(s) =D(sI+y) 'D+D(sI+y) 'D2(sI+2y) 'D(sI+y) 'D. (10.248)

For the operator L, of the Smoluchowski equation we get with the help of
(10.204)

Ly=Dy™'D+Dy 'Dy'Dy'D-Dy 2DDy 'D, (10.249)

which reads in x representation [e = 0; y = y(x)]

1 1/1\
L= _+_f”+— DV (s ) L0224 ). (0250
Ox y Y\ y Ox y Ox

Notice that the third-order derivative (8/8x) now already occurs in the second-
order expansion term ~y~3, whereas in (10.197) it first occurred in the third-
order expansion term ~y . In first order, (10.250) can still be brought to an
Hermitian form

L = exp[f(x)/Qo}i) Loexp[—f(x)/(2v2)]

f! f/ _
=(-v —+ —+ L. 10.251
< th Ox thh> < * Ox 21]m> ( )




11. Brownian Motion in Periodic Potentials

In this chapter we apply some of the methods discussed in Chap. 10 for solving
the Kramers equation for the problem of Brownian motion in a periodic
potential. As discussed below, this problem arises in several fields of science, for
instance in physics, chemical physics and communication theory. Restricting
ourselves to the one-dimensional case, we deal with particles which are kicked
around by the Langevin forces and move in a one-dimensional periodic potential
(Fig. 11.1). Because of the excitation due to the Langevin forces the particles may
leave the well and go either to the neighboring left or right well or they may move
in the course of time to other wells which are further away. For long enough
times the particles will thus diffuse in both directions of the x axis. As shown in
Sect. 11.7 this diffusion can be described by a diffusion constant D, if we wait
long enough. Thus the mean-square displacement is given by

{x(t) —x(0))*y = 2Dt 11.1)

for large times ¢. (The particles are then distributed over many potential wells.)

If we apply an additional force F, which is independent of x, the particles will
preferably diffuse in the direction of this force and in the average there is a drift
velocity {(v) which depends on the external force. For small forces the mobility u
defined by

(v) =uF (11.2)

will be independent of the force F (linear response), but for arbitrary forces F it
will depend on the force F (nonlinear response). One problem is to calculate this
linear and nonlinear mobility. As shown in Sect. 11.7, the diffusion constant is
related to the mobility in linear response. For a time-varying force the Fourier

flx)

—>F

SNV R
Fig. 11.1. Particle moving in the periodic poten-

< L tial f(x)
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transform of <v(z)), denoted by (&(w)), in terms of the Fourier transform of
F(1), denoted by F(w), takes the form in linear response

(3(w)) = y(w)F(w) , (11.2a)

where y(w) is called the susceptibility.
As discussed in Chap. 10, the equation of motion for the coordinate x(¢) of
the particle is the Langevin equation

¥+ yx+f1(x)=F+I(1). (11.3)

Here f(x) = f(x + L) is the periodic potential with period L divided by the mass m
of the particle, F is the external force divided by m, and y is the damping con-
stant. The Langevin force I'(¢) describes white noise with zero mean and its cor-
relation function is given by
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(@)L =29kT/m)ydt—t'), (11.4)

where T is the temperature. For a qualitative discussion it is useful to plot the
total potential ¥(x) per mass, i.e., the sum of the periodic potential f(x) and the
potential — Fx of the external force F (Fig. 11.2)

Vix)=f(x)—Fx. (11.5)

This total potential ¥V is a corrugated plane; the average slope is determined by
the external force F. For large forces F, V(x) has no minima, whereas for inter-
mediate and small forces minima do occur. The Langevin equation (11.3) thus
describes the Brownian motion of particles along such a corrugated plane. We
now discuss qualitatively the motion of particles for large and small friction
constants y.

High-Friction Case

For large y we can neglect inertial effects, i.e., we omit the % term in (11.3).
Without any noise I'(¢) the particle performs a creeping motion. If minima of the
total potential V(x) exist, the particles finally reach them. This solution we call
locked solution. If minima do not exist the particles move down the corrugated
plane. This solution will be termed running solution. With noise, the particles do
not stay permanently in the locked state but will sometimes be kicked out of their
wells, moving to the lower neighboring well and so forth. The particles thus
perform a hopping process from one well to the next lower one.

Intermediate- and Low-Friction Case

For smaller friction constants, inertial effects become important. Without noise
a locked solution may occur if minima exist. We may, however, also have a
running solution, even if the minima of the potential do occur. Because of their
momentum the particles may overcome the next hill if the friction constant is
small enough. This interesting bistability of (11.3) without noise is discussed in
detail in Sect. 11.6. If we include noise, the particles may be kicked out of their
well, i.e., out of the locked state. If the damping is small enough, they do not lose
their energy very rapidly and therefore they may no longer be trapped in the
neighboring lower well, as they are for large friction. The particles may thus get
in the running state and may stay in this state for some time. Due to the Langevin
forces, the energy of the particles fluctuates. The energy of the particles may thus
decrease and they may again be trapped in one of the wells, now again belonging
to the locked state. With the inclusion of noise we therefore get transitions
between these two states.

It follows from these qualitative discussions that the low- and intermediate-
friction case is more interesting than the high-friction case where no such
bistability can occur.

Because of the nonlinearity f'(x) in the Langevin equation (11.3), one uses
rather the corresponding Fokker-Planck or Kramers equation (10.3) to calculate
mobility or other expectation values. In the high-friction case the position x
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becomes a slow variable and the velocity a fast variable (see Sect. 8.3 for a discus-
sion of slow and fast variables). Therefore the Kramers equation then reduces to
the Smoluchowski equation, i.e., a one-variable Fokker-Planck equation for the
slow variable x. This one-variable Fokker-Planck equation can easily be solved in
the stationary state, Sect. 5.2. For lower friction constants both variables x and v
are relevant variables and the Fokker-Planck equation for both has to be solved.
Solving this two-variable Fokker-Planck equation is much more difficult than
solving the one-variable Smoluchowski equation. For very small friction
constants (zero-friction limit), however, the energy becomes a slow variable,
leading again to a one-variable equation.

The problem of Brownian motion in periodic potentials arises in quite dif-
ferent fields, Sect. 11.1, e.g. in solid-state physics, chemical physics and com-
munication theory. By studying the synchronization of an oscillator, Stra-
tonovich [11.1, 2] derived the stationary solution of the Smoluchowski equation,
i.e., of the Fokker-Planck equation in the high-friction limit (see also [11.3 - 5]).
Haken et al. [11.6] solved this Smoluchowski equation in connection with the
locking of two laser modes, Ivanchenko and Zil’berman [11.7], and Ambegaokar
and Halperin [11.8] solved it in connection with the Josephson tunneling
junction. For a solution of the time-dependent Smoluchowski equation and its
application to quantum noise in ring laser gyros, see [11.9, 10].

Solutions of the Fokker-Planck equation with two variables and with a small
but time-varying field (linear response) or some expectation values of this
Fokker-Planck equation have been obtained for not too low damping constants
by different methods in connection with superionic conductors [11.11 —15]. An
approximate solution of this equation was proposed by Das and Schwendimann
[11.16]. The one-dimensional rotation of dipoles in an external field also leads to
the Langevin equation (11.3). Different methods have been developed in this case
to obtain susceptibilities in linear response [7.7, 11.17 — 20].

For large but time-independent forces corrections to the Smoluchowski equa-
tion have been obtained by Tikhonov [11.21] and Lee [11.22]. Kurkijirvi and
Ambegaokar [11.23], and Schneider et al. [11.24] have solved the two-variable
Fokker-Planck equation by computer-simulation methods. A stochastic
formulation for the motion out of the wells as given by Noziéres and Iche [11.25]
and a WKB-type expansion was developed by Ben-Jacob et al. [11.26].

In several papers Vollmer and the author [9.14—17, 11.27, 28] have applied
the matrix continued-fraction method, which was developed for the Kramers
equation in Chap. 10, to Brownian motion in periodic potentials. It turns out
that this method works very well down to very low friction constants, so that
even the connection to the zero-friction limit solution [11.29, 30] can be made.
Results will be discussed for the stationary solution, susceptibilities, eigenvalues
and their eigenfunctions in Sects. 11.5, 8, 9, respectively. The only limitation of
the matrix continued-fraction method seems to be that the potential differences
Jmax—Jfmin should not be too large compared to k7. Otherwise the dimension of
the matrices which have to be inverted becomes too large and then the method
ceases to be tractable.
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11.1 Applications

Let us discuss some of the main applications of Brownian motion in periodic
potentials.

11.1.1 Pendulum

The equation of motion for the angle of a mathematical pendulum with mass m
in a viscous fluid and under the influence of an additional torque M (Fig. 11.3) is
given by

ml p+mylo+mgsing =M+11(2) . (11.6)

The effects of the fluid are described by the damping constant m y and the fluc-
tuating Langevin force I'(¢). If we divide (11.6) by m/ we recover the form (11.3)
with ¢ = x where the periodic potential f(x) is given by the cosine potential

S(p)= —(g/D)cosp. 11.7)

An important quantity is the average angular velocity as a function of the
torque M

(@) = Fct[M/(ml)] . (11.8)

For a small torque M the pendulum will oscillate around its stable downside
position, i.e., () will be zero. If the torque M is positive and large enough the
pendulum will rotate clockwise, i.e., {¢) will be different from zero. In the pres-
ence of the noise (@) will be a continuous function of the torque M.

11.1.2 Superionic Conductor

A superionic conductor consists of a nearly fixed ion lattice in which some other
ions are highly movable. As an example we consider silver iodide (Agl). Here the

M

)

rit)

Fig. 11.3. Mathematical pendulum with an additional torque M and
Langevin forces /'(¢)
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lattice consists of iodide (I ") ions, while the silver ions (Ag™*) are highly mobile
(Fig. 11.4). If an external field is applied to a one-dimensional model, neglecting
interaction of different Ag™ ions, then the equation of motion divided by the
mass m in the periodic potential mf(x) is [11.11 —15]

X+ypx+f(x)=F+TI(t). (11.9)

In (11.9) we added a damping force ypx and a Gaussian white-noise force I'(¢)
(per mass)

@Iy =2y(kT/m)d(t—t') . (11.10)

By these two forces the effect of the small lattice vibrations on the motion of the
Ag™ ions is taken into account. If the motion of the Ag™* ions is slow compared
to the lattice vibrations the white-noise approximation in (11.10) is justified. In
this application we are mainly interested in the current. This current can be ex-
pressed by the drift velocity or by the mobility (11.1), or in the dynamical case by
the susceptibility y(w) (11.2).

For more realistic treatment of superionic conduction this simple model (one
dimension, one particle) should be generalized to three dimensions and the inter-
action between the mobile ions should be taken into account (Sects. 4.8.3, 4).

11.1.3 Josephson Tunneling Junction

A Josephson tunneling junction [11.31—33] consists of two superconductors
which are separated by a thin oxide layer, Fig. 11.5. The phase difference

__@_.

F— Superconductor | \ Superconductor Il 4—

— | Fig. 11.5. Josephson tunneling junction
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between the wave functions w; and yy; of the Cooper pairs in the two supercon-
ductors is denoted by ¢

win = Nye'’. 11.11)

Furthermore the ratio N = |yy|/|w;]is assumed to be constant. The time
derivative of this phase difference is given by the Josephson equation

6=2eV/h, (11.12)

where V is the potential difference across the oxide layer. If the resistance Ry is
very large, the current I is kept fixed. This total current can be written as

I=V/R-L(t)+CV+Ising, (11.13)

where the first two parts on the right-hand side stem from the resistor R. Here
—L(t) is a noise current, the correlation function of which is given by

(L(OL(t")y = Q/RYKTo(t—1') . (11.14)

The term CV is the current due to the capacitance C of the junction. The last
term is the current due to the Cooper pairs tunneling through the junction, where
I.x is called the maximum Josephson current. Combining (11.12, 13), we obtain
the form of the pendulum equation (11.6) [11.7, 8]

2 2
h . h 1 . h . h h
— ) C o+ | — | —p+ —Ipsing=—1T+——L(¥). 11.15
<2e> v <2e> R v 2e v 2e 2e ) ¢ )

Here the capacitance C acts as a mass, the resistor R is responsible for damping
and the current 7 is proportional to the torque. In this case we are interested
mainly in the current voltage characteristic, i.e., the current I as a function of the
voltage (V') = (A/2e){@).

11.1.4 Rotation of Dipoles in a Constant Field

The model of Brownian rotation of dipoles first developed by Debye [11.34] is
now widely used to explain infrared absorption by polar molecules, see [7.7,
11.17 - 20] for a review.

Here we consider one-dimensional Brownian rotation of dipoles in a constant
field F,, including inertial effects. The field F, may for instance be a local field
produced by some other immobile molecules. As is well known, the potential
energy of a dipole of moment y, in an electric field F is given by

V(p) = ~uoF.cosp, (11.16)
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Fig. 11.6. Rotation of a dipole with moment g, in a
constant field F, and additional time-varying field
parallel and perpendicular to F,. The equation of
motion is equivalent to that of a pendulum where
the support is accelerated parallel and perpendicular
to the graviational force

F )

where ¢ is the angle between the dipole and the field, Fig. 11.6. If we apply an
additional time-varying field with components F,(¢) and F |(#) perpendicular and
parallel to the constant field, the equation of motion for the phase ¢ of the
dipoles with moment of inertia I, takes the form

Iy ¢+ yIo@+ uoF . sing = uo[F (f) cos ¢ —F () sing] + I'(¢) . (11.17)

Here again the influence of the heat bath is taken into account by the damping
torque yI,¢ and by the fluctuating torque I” with

(F( Ity = 21,ykTo(t~1') . (11.18)

Equation (11.17) is also the equation for the Brownian motion of a pendulum
where the support of the pendulum is accelerated perpendicular and parallel to
the gravitational field, Fig. 11.6.

Here we are interested mainly in the susceptibility, i.e., the linear response of
the Fourier transform of the averaged dipole moment p divided by the Fourier
transforms of the additional electric ac field

xﬁ(w) = ﬁﬁ(w)/F‘ﬁ(w) - (11.19)

Though the right-hand side of (11.17) is different to the right-hand side of (11.3),
we shall see in Sect. 11.8 that y, (w) can be expressed by y(w) from (11.2a).

11.1.5 Phase-Locked Loop

An ideal phase-locked loop (PLL) is a device where the phase of an oscillator
signal follows exactly the phase of a reference signal. Phase-locked loops are
used for instance in radio or TV sets to obtain stable tuning. [Here an oscillator is
phase locked to an oscillation, the frequency of which is a rational multiple of the
frequency of a built-in crystal oscillator (PLL synthesizers).] If there is some
noise in the PLL, the phase of the oscillator and the signal are no longer locked
exactly. If the phase difference is 27 it is said that a cycle slip has occurred.
Obviously, the cycle slip rate/s is a quality measure for a real PLL.
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Fig. 11.7. A phase-locked loop
s(t) >< z(t) + [ (PLL). The multiplier is indicated

Noise added by x and the voltage-controlled
oscillator by VCO. For an ideal
PLL the noise term I” is missing

y(t) x(t)=z(t)+r(t)

e(t)
vCco Linear Filter

A type of PLL is shown in Fig. 11.7 [11.4, 5] whose equations follow. The phase
w of the voltage-controlled oscillator (VCO) leads to the cosine oscillation

(1) =2K cosw(t) , (11.20)

where the derivative of the phase (frequency) is proportional to the input voltage
e(t) according to

W= Wy = wo+ - e(t). (11.21)
In the multiplier the signal with frequency w

s(t)y=)2Asin0; 0= wt (11.22)
is mixed multiplicatively with the output of the VCO leading to

z(t) = sy = AK[sin(6— y) +sin(0+ y)] . (11.23)
The term with the wavy underline oscillates with approximately 2w, and is
assumed to be filtered out by a filter not shown in the diagram. As indicated in
the diagram, a noise term I'(¢) is added to z(¥), i.e., x(¢) = z(¢) + I'(t). Then x(¢)

passes through a filter. We assume that this filter is linear and works so that the
input voltage x(¢) is connected to the output voltage e(r) by

Téete=x. (11.29)
A filter where the input voltage x is applied to a resistor R and a capacitance C in
series and where the output voltage e is the voltage of the capacitance leads to this
relation with 7= RC.

For the phase difference

p=0-y (11.25)

we then get the equation (¢ = 60— iy = w— wp— €)

T9+to+aAKsing=(w—wy)—al. (11.26)



11.1 Applications 285

For white noise I'(¢) we thus obtain, up to a negligible sign change in front of I,
the same Langevin equation (11.3) as for a pendulum with a torque. The torque
is here proportional to the detuning w— w,. The corresponding total potential
(11.5) reads in this case

tV(p)= —aAKcosg—(w—wpy) ¢.
As may be easily derived from this expression, minima of ¥(¢) occur if
[ AK|>|wy— o] . (11.27)

As discussed in the beginning of this chapter, then a locked solution with {(¢) = 0
may occur if the noise is neglected. In other words, we then have an ideal syn-
chronization to the signal frequency. If noise is taken into account {¢) will no
longer be zero. Therefore (¢) as a function of the detuning w— wy will be an
important relation.

A phase-locked loop with a linear filter leading to a first-order time derivative
in the input-output relation is called a second-order loop, because the equation
for ¢ is of second order. Without any filter or for 7 = 0 then e = x and the equa-
tion for ¢ reduces to a first-order equation and therefore the loop is called a first-
order loop. As discussed in Sect. 11.6, the second-order loop may show hysteresis
whereas the first-order loop never does.

11.1.6 Connection to the Sine-Gordon Equation

The Sine-Gordon equation reads

aZ(o 2 8(02 .
-c + dsing=0. (11.28
a1? dx? v )

It is used in quite a number of fields, for instance in solid-state physics for decrib-
ing dislocations [11.35] and long Josephson junctions [11.36]; in quantum optics
for describing self-induced transparency [11.37]. As discussed in several text-
books [11.37 —39], (11.27) possesses solutions in form of solitons, which prop-
agate without being disturbed asymptotically by other solitons. One may gen-
eralize (11.28) by adding a damping term, a constant force term and a noise term
[11.40], i.e.,

%0 20%
or? Bx?

(T, ) Fx',t"))y=2y0dx—x")o(t—-t").

+ y%+dsin(o=F+F(x,t)
(11.28a)

A chain of coupled pendula [11.41] also leads to (11.28a), if the phases of neigh-
boring pendula differ only slightly. Without the space dependence 82¢p/0x3,
(11.284a) is of the form (11.3) in different notation. The position x in (11.3) is
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now denoted by ¢. Equation (11.3) with f’(x) = dsinx may therefore be con-
sidered to be a Sine-Gordon equation in zero dimensions but with an additional
noise and damping term.

11.2 Normalization of the Langevin and Fokker-Planck Equations

We have seen in the last section that several applications lead to the form of the
Langevin equation (11.3) with a periodic potential f(x) = f(x+ L). In Applica-
tions 1, 3, 4, 5 we had a cosine potential with period 2 7. In Application 2 the
period was the lattice constant L. For further treatments it is convenient to trans-
form the period to 2 7 and use the following variables, parameters and potentials

2n 2n v
Xp=——X § Ip =—0gl; Up=—:7;
Vo
L kT v\
Y=o Ly @y=—— = () vy =VkT/m; (11.29)
21 v muvg Vo
L F d L 1 d L
-t f g oLy Y LY eyt .
21 v vy dx, 2n vy dx 2nvg

The arbitrary quantity v, may be made either equal to one or it may be a properly
chosen velocity. In the latter case all normalized quantities are dimensionless.
The Langevin equations (11.3, 4) read

d? d d
gy Y piny St 2m) = fu), (11.30)
dt; dt, dx,

(G L)) =29,0,0(t,— 1) . (11.31)

For further applications it is worthwhile to note that the mobility times the
damping constant is independent of the choice of the transformation

Yabhn = Ynk0)/Fp=y{0)/F=yu. (11.32)

More invariants like y,¢, = yt and v,¢,/x, = vt/x may be found from (11.29).

If vy is chosen to be equal to the thermal velocity vy, = |/kT/m, 6, is equal
to one. This choice is very convenient for those calculations where the depen-
dence of the drift velocity on F,,, the potential height or the damping constant y,
is considered. If, however, the dependence on temperature is needed, this nor-
malization is not appropriate because all the normalized quantities depend on
temperature. Then we may normalize the height of the periodic potential equal
to 1 by a properly chosen v,. It is, of course, also possible to choose v in such a
way that either y, or F, is equal to one.
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In further treatment we omit the normalization index n, i.e., we write
(11.30, 31) in the form

Xtyx+f =F+I'(t), f(x+27n)=f(x), (11.30a)
T)I@))=2y0(~1"). (11.31a)

Normalized Fokker-Planck Equation

The Fokker-Planck equation corresponding to the normalized Langevin
equation (11.30a, 31a) takes the form

__:[—-—v+ai<yv+f’—F+y@i>} w. (11.33)
v

ov

With the exception of the additional constant force F this equation agrees with
(10.3) after putting @ = v3,.

11.3 High-Friction Limit

In the high-friction limit we may omit the inertial term % in (11.30a),
yx=F—f'(x)+I(t). (11.34)

In Sect. 10.4 an expansion of the Kramers equation in terms of inverse powers of
y is derived. This expansion can of course be applied to (11.33) [Replace f’ by
S'—F in (10.197)]. The first approximation of this expansion is the
Smoluchowski equation

_=__<f’—F+@a—i> W:—%, (11.35)

where W= W(x,t) = {W(x,v,t)dv is the distribution function for x. Equation
(11.35) is equivalent to the Fokker-Planck equation corresponding to
(11.34, 31a). In (11.35) we introduced the probability current S.

11.3.1 Stationary Solution

Let us first look for the stationary solutions of (11.35). Because the probability
current S is constant

yYS=(F-fYW-O3W/dx, (11.36)
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we obtain immediately the solution (Sect. 5.2)
W(x) =e V(x)/© I:N_ Y(S/@) seV(x')/@dxl} , (11 .37)
0

where V(x) = f(x) — Fx is the total potential (11.5). If x is an angle variable this
distribution must be periodic in x with period 2 7. If we require only that W(x) is
bounded for large enough x, it follows already from (11.37) that W (x) must be
periodic. To prove this, we first calculate the integral (0 =x <27)

2an+x s 2z , 2rn s 2an+x ,
S eV(x )/@dxr — SCV(X )/@dx/ .+ S eV(x )/@dxl + S eV(x )/de’.
0 0 2n(n—1) 2nn

Because of V(x+2mn) = V(x)—2nnF we write (after using a proper shift in the
integration variables)

2an+x x
j eV(x )/@dx — I+Ie—2nF/@+ . +Ie—2n(n—1)F/@+ seV(x )/@dx,e—ZnnF/@
0

0
{ — e~ 27nF/O

S —

X
—2anF/O [, V(x')/ O '
1 _e—27'[F/@ §e dx ’

0

where [ is defined by
2z
I= [eV®Odx. (11.38)
0

Thus we have

ySI jl 27NF/O

Wx+2an)=e VOO N—
( ) @(1 _ eflnF/@)

¥ e—vm/@{ ySI - y_g_i'ev(xl)/@dxl} . (1139
0

o(1—¢ 270

For F>0 (F<0), this expression can be bounded only in the limit #— + oo
(n— — o) if the first bracket on the right-hand side vanishes, i.e.,

ySI=ON(1—e 270y, (11.40)
Hence, we obtain from (11.39, 37)
Wx+2n)= W(x) (11.41)

which proves our statement. Because of the periodicity we normalize the distribu-
tion in the periodicity interval



11.3 High-Friction Limit 289

Zgn W(x)dx = Nzgne VY Ody y(S/@)Z(j:e —V/e < ge V(X')/@dx’> dx.
=1. (11.42)
The mean drift velocity (v) is given by the constant probability current times 2 7
(v = &) =y (F—f' () + T(1))
=y E-L @)y =y (- o was

2n
=y ' (yS+O8W/dx)dx =27S. (11.43)
0

In deriving (11.43) we used (11.34, 36, 41). The two equations (11.40, 42) deter-
mine the integration constants N and S. By eliminating N we obtain the drift
velocity

27‘[@(1 _e~2ﬂF/@)

y(v) = 2n 27 2n X
S eV(x)/@dx !‘ e~ V(x)/@dx_(1 _e—ZnF/@) S e—V(x)/@seV(x’)/@dxldx .
0 0 0 0 (11.44)

If we consider only the mobility in linear response i.e. for F—0, the double
integral term vanishes and in the other integrals we can replace V(x) by f(x):

() = lim X< = _ 2n . 2r__ (11.45)
F-0 §"ef(x)/@d ¥ 5”6 ~F6/0 4
For the cosine potential 0 0
fx)= —dcosx (11.46)
(11.45) reduces to
yu(0) = [Io(d/©)] 2, (11.47)

where I is the modified Bessel function. For model potentials, which are piece-
by-piece linear, the integrals in (11.44, 45) can be evaluated analytically. For the
cosine potential (11.46) one may express y u by Bessel functions of complex order
[11.2, 6].

Continued-Fraction Expansion

For the cosine potential (11.46) we can obtain a very useful expansion in terms of
continued fractions as follows [11.7]. Inserting the Fourier expansion
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Wi(x) = f c.€™,  cp=c*, (11.48)
n=-—o
in (11.36) we obtain for the cosine potential the tridiagonal recurrence relation
(F-in®)c,+ tid(c,_1—cp 1) = ySOno. (11.49)

For n = 1, these equations give an infinite continued fraction for ¢;/co = ¢*/cy,
Sect. 9.2.1. If we then use (11.49) for n =0 and the normalization condition
co=(27) ! we can express yS by a continued fraction. The final result for the
mobility times the damping constant reads

yu=y2nS/F=1-sinx)d/F, (11.50)

where — {sinx) is the imaginary part of the continued fraction [see (9.31) for this
notation]

27e = (e ¥y = (cosx) —i(sinx)

025 | 025 | 0.25

= . - —+ + - (11.51)
le/d+iF/a * [20/d+iF/d  [30/d+iF/d

This expression can easily be evaluated on a programmable pocket calculator
even for very low @/d (e.g, ©/d = 10™%). The results are shown in Fig. 11.8. The
zero temperature limit @— 0 is obtained as follows. For F > d the deterministic
equation of motion is given by (11.34) without the noise term. If we write this
relation for the cosine potential as

1 ydx ds
— T =Wy ox)dx=—,
T Fodsine oo T

where T is the time which a particle needs to travel the distance 27

n
T= yd  __y2m (11.52)

—Sn F—dsinx a ]/Fz_dz

we get the following expression for the stationary distribution function in the
zero-temperature limit

z_ 2 :
Wonor) = —— VE=9" - ps g, (11.53)
2n F-dsinx ’

For |F| < d we have x = 0 and therefore the zero-temperature distribution is the &
function 6(x — arcsin(¥/d)). Thus for the mobility times the damping constant
we obtain
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Fig. 11.8. The mobility times
the damping constant as a
function of F/d for various
temperatures @/d. The zero-
temperature  limit  (11.54)
practically agrees with the
©/d = 0.001 curve

.
O T el 1

1.5 " 2.0
Fld —

12r .
Yho0= ¥ (S) (F—dsinx) Wg_o(x)dx

i 2
=[ Fr=d¥F ¢ Flzd (11.54)

0 |Fl<d

This result can also be derived from the continued fraction (11.51). For ®—0
(11.51) becomes a periodic continued fraction having the value

(e Moo = —iF/d+]/1-(F/d),
]/ _ 2
{COsX)g_0 = 1-(F7d) for [Fl=d
0 F =zd,

(11.55)
Frd |Fl=d

(sinx)g_o = for .
o0 {F/d—]/(F/d)z—l F zd

The distribution function for finite temperatures can be obtained from (11.49) by
up-iteration. Because we now know ¢, and ¢y, the other coefficients ¢, with n =2
and therefore the distribution function follow by up-iteration. As mentioned in
Sect. 9.2.1 this up-iteration is numerically unstable. Therefore higher accuracy is
now required if we use this procedure. As also mentioned in Sect. 9.2.1 the up-
iteration according to (9.28a), however, is numerically stable. The results for the
stationary distribution function are shown in Fig. 11.9. The asymmetry for small
©in Fig. 11.9b is explained as follows. At x = 7/2 the slope of the potential V is
zero, compare Fig. 11.2b for F/d = 1. The particles which are kicked to the right
of x = n/2 move further down the potential, whereas the particles kicked to the
left are reflected at the high potential barrier and thus accumulate at x < /2.
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Fig. 11.10. The mobility times
the damping constant for the
periodic saw-tooth potential
S =QRd/n)xif0=x=n/2;
f(x) = [2d/3n)]Q2r—x) if
n/2 =x=2n as a function of
F/d for various temperatures
e/d

For symmetric potentials the mobility u(f) is an even function in F; for
asymmetric potentials this is no longer true. In Fig. 11.10 the result is shown for a
saw-tooth potential [11.42].

Inverse Friction Expansion

The next correction term to the Smoluchowski equation (11.35) reads [(10.250),
8y/0x =0, f'=f —F, v} = O]

W _ 8 s LD (p-rro 2w (11.56)
ot ox y y ox

In the stationary state the probability current S is again constant. Because the
correction term f''/y? is small we may write

ySU-f/y})=F-f)W—OdW/dx. (11.57)
The drift velocity and the constant probability current S are still connected by

(v)=2nS§, (11.58)
which may be proved in analogy to (11.43) by using (11.3, 57) and the periodicity
of f(x) and W(x). Equation (11.57) can be solved similarly to (11.36). For the
cosine potential (11.46) we can again use expansion (11.48). We then obtain
(11.49) with the additional term — Sd(J,, + J, _1)/(2 ) on the right-hand side of

(11.49). The same method used previously to solve (11.49) now leads to

yu=[1—{sinx)d/F1[1—{cosx)d/y* 1+ Oy~ %) . (11.59)
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- Fig. 11.11. The average (cosx)
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Here, (cosx) and — {sinx) are the real and imaginary parts of the continued
fraction (11.51). The result for {cosx) as a function of the field F/d is shown in
Fig. 11.11. The zero-temperature result follows from (11.55).

11.3.2 Time-Dependent Solution

Because the time does not explicitly occur in the Smoluchowski equation (11.35)
we can make the separation ‘ansatz’

W(x, 1) = p(x)e™ " (11.60)
which leads to the eigenvalue problem
Lsg,= —Anon, (11.61)

where Lg is the operator of the Smoluchowski equation

LS=i i[(f’—F)wL@—a—il. (11.62)
y Ox Ox

In general the solution W(x,¢) need not be periodic in x. It follows from
Floquet’s theorem [11.43 — 45] that the eigenfunction may be chosen in the form
of Bloch waves

Pa(x) = e* v, (k,x) . (11.63)

Here v,(k,x) is a periodic function in x

v, (k,x+2m)=v,(k,x). (11.64)
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If we require the solutions to be bounded for x — + o, k must be real. The k
values can be restricted to the first Brillouin zone

(11.65)

A

k

lIA

1
> -

(NE

By the transformation w(x) = exp[V(x)/(2 ®)] p(x), where V(x) is the total
potential (11.5), one formally obtains a Schrodinger equation for y(x) with the
periodic potentialy Vs = V' ¥/ (4 @) — V'/2 = (f' = F)>/(4 ©)— f'/2(Sect. 5.4).The
boundary condition (11.63, 64) for ¢(x) transforms to the boundary condition

Wa(x) = exp(iks) v,(k,x) = exp{[ - F/(20) +ik]x}5,(k,x), (11.63a)
U,(k,x+27) = 0,(k,x) = exp[f(x)/(2O)] v, (k,x) (11.64 a)

for the wave function w(x). Usually the boundary condition (11.63a, 64 a) with
real kg is used for the Schrodinger equation. If we know the eigenvalues 1,(ks) of
the Schrodinger equation we may obtain the eigenvalues 1,(k) of the
Smoluchowski equation by analytic continuation (by replacing kg by k+iF/
QO)), i.e. A,(k) = A (k+1F/(2®)).

In some applications only periodic solutions need be considered. If x is an
angle variable and if we do not distinguish between full rotations, the solution
W(x,t) must be periodic in x and therefore k£ can take only the value 0. To
calculate expectation values of periodic functions we also need only periodic
solutions. If, however, the diffusion over the infinite x axis is investigated, the k
dependence must be taken into account. The eigenvalues A, then depend on k.
For vanishing F but arbitrary k the eigenvalues 1, are real, because the problem is
then essentially equivalent to a Schrodinger equation problem. For nonvanishing
F the eigenvalues 1, become complex.

Generally, eigenvalues and eigenfunctions may be obtained by numerical
integration or by some other numerical methods. For simple models, however,
the eigenvalues and eigenfunctions may be obtained analytically.

Periodic Potential Model

For the potential shown in Fig. 11.12, using the jump condition in Sect. 5.6 we
obtain for a vanishing external field F the eigenvalues [5.12]:

Lk)=(@/y)Y(n+v)?; n=0,+1,+2, ... (11.66)
where v is given by (=L <v=< 1)
v= 1" arcsin{sin nk/cosh [f,/(2 o)} . 11.67)

Some of the lowest eigenvalues are shown in Fig. 11.13. The eigenvalues are
arranged in bands, one for every |n|satisfying
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Fig. 11.12. Periodic potential model
Fig. 11.13. Eigenvalue bands for the periodic potential =)
model in Fig. 11.12 for fy= © © T
-0.5
A (k)
An(_izl—nig " élnlzl—n -5
) () ) () (%)
For different bands the following relations hold:
Ao(k)<lﬂ1(k)<A1(k)<l_2(k)< for k>0,
LK)y <MKy <Ai_j(K) < Ak)<... for k<O.

The eigenfunctions ¢, and ¢,/ of L and L™ are expressed by the eigenfunctions

v, of the Hermitian operator

2 12
L= /0oL e~T/eo _ g O VA e
ox 4 © 2

(5.39, 54, 55) in the form
0, = e WO, _ o~fW/QOeikx, (kx|

o) = e/ 0/(26) W, = ef(x)/(Z@)eikxun(k’x) )

The periodic function u,(k,x) normalized according to
27
§ur(k,x)u,(k,x)dx =1
0

is given by

(11.68)

(11.69)

(11.70)
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An(k)[ei(rl+V'k)x_a(k)eivne—i(n+v+k)X] for 0<x<n
u,,(k,x) - An(k)einn[ei(n+v—k)(x—n)+a(k)eivne—i(n+v~k)(xvn)] (11.71)
for n<x<2m,

with

a(k) =(coskn— 1/cosh2 [fo/ 2 ©)] - sin’k 71)/sin[fy/(2 ©)]
(11.72)
Ay ky=2n[1+a(k)*1}~ V2.
The function u,(k, x) for the stationary distribution reads

u(0,x) = exp[ - f(x)/(2 ®)] {2 7 cosh [f,/(2 ©)]}

and the transition probability in terms of eigenvalues and eigenfunctions finally
takes the form

P(x,t|x',0) = exp [_ Jx) + f(x’)]

20 20
oo 172 ,
x ¥ | ey ke, x)urk,x')ye ) dk (11.73)
n=-o —1/2

Cosine Potential

The general time-dependent solution can be written as

12 o .
Wx,t)= | e Y c,kt)e™dk. (11.74)

-1/2 n=—oo

For periodic W the integral has to be omitted and we have to put £ =0, i.e.,

Wix,t) = f c,(el™;  c,=c*,. (11.74a)

n= -0

We obtain the following tridiagonal recurrence relation for the cosine potential
(11.46) by inserting (11.74) into (11.35):

P =[—i(n+k)F—On+k)*c,+ L(n+k)d(cp_1—Cnyy) - (11.75)
As discussed in Sect. 9.2, the Laplace transform of the Green’s function as well
as the equation for determining the eigenvalues can be given in terms of ordinary

continued fractions. For instance, the ansatz ¢, = exp(— A1) &, leads for k =0 to

1ndé, 1 +(On*+inF-yA)é,— Lndé, 1=0. (11.76)
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For A + 0 (the stationary problem A = 0 is treated in Sect. 11.3.1), (11.76) leads to
éy = 0. Thus (11.76) splits into two systems, one for n > 0 and the other for n < 0.
For real A (11.742) must be real and therefore we have é, = é* .. Both systems are
thus equivalent and either one can be used to find the real eigenvalues. For
complex eigenvalues A one system is the complex conjugate of the other one.
Thus one determines A the other A*.

For real and complex eigenvalues 1 +0 we can eliminate all é, with n>1
finally leading to

[yA-iF—O+K(-1)]é=0 (11.77)

where K, (s) is given by the ordinary continued fraction

~ 1.1.2.42 1.9.3.42
Ki(s)= - 1, 2 dz I+ 4 2, 3 R (11.78)
lys+2iF+22@  |ys+3iF+3%6
Solutions of (11.77) with & + 0 are only possible if
D(A) = yA—iF-0+K(-1)=0. 11.79)

From this equation the eigenvalues can be determined. In Fig. 11.14a,b the
eigenvalues are shown as a function of the external force for various d/ @ ratios.
As is seen, the eigenvalues A + 0 are always complex for F+ 0 though the imagi-
nary parts have extremely low values for small ®/d and F/d < 1. In Fig. 11.14b
the fundamental frequencies w and 2 w of the noiseless overdamped motion are
also shown. This fundamental frequency is 2  divided by the time (11.52), which
a particle needs to travel the distance 27, i.e.

w=)/F*-d*y. (11.80)

Eigenvalues for Vanishing Force

If F = 0 the eigenvalues are real. To obtain these eigenvalues for small d/© ratios
it is not advisable to use (11.77) for higher eigenvalues A, with r = 2. In this case
we eliminate all é, with n # r for the system with n > 0 leading to

[yA-rPO+K,(—)]é,=0, (11.77a)
where K, (s) is given by a sum of an infinite and a finite continued fraction

Lr(r+1)d? | L+ ) (r+ 2)d2|

_K~ =
/) ys+r+1’0 | ys+(r+2)%0

pre=nd® | $e-10- 2)d2|

- 11.78
ﬂs+(r—1)2@ | ys+(r—2)20 ( K
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Fig. 11.14a, b. The real (a) and the imaginary (b)
parts of the two lowest non-zero eigenvalues A as
a function of F/d for various d/ @ ratios. In (b)
the limit result (11.80) and its harmonic are
B - dotted. (c) The four eigenvalues A,(n=1,2,3,4)
1 3 of the Smoluchowski operator (11.62) for the
i L cosine potential with k=0 and F=0 as a
function of d/@

(c) o 2 A 6 8 10

The eigenvalues follow from the equation
yA-r’@+K,(—2)=0. (11.79a)

Equation (11.79a) is now preferable because K, is small for small d/@ and
yA,=r*@. For small d/@ we can expand the continued fraction (11.78a) in
powers of d/@ leading to
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2 1 n2 d 2
YA,/ @=n +74—5——1— o for d/@<1. (11.81)
n —_

For large d/® we expand the cosine potential at its minimum and maximum

—COSX = —1+lx2—Lx4 for x=0,
24

2

—cosx =1 —%—(x—n)z——l—(x—n)“ for x=mn.

If the Smoluchowski equation (11.35) is then transformed to the Schrodinger
equation (Sect. 5.4) and if the x* terms are taken into account by first-order per-
turbation theory, we get

yA,/®@=nd/@-n*2 for d/O>1. (11.82)

In Fig. 11.14c the ratio y 1, /@ is plotted as a function of d/©.

The coefficients are determined from (11.76) by upward and downward
iteration. Because the coefficients can be chosen to be real or purely imaginary
the eigenfunctions are even or odd. Thus all except the stationary eigenvalues are
twofold degenerate. (If F' 40 we have pairs of complex conjugate eigenvalues,
which are not degenerate for A + 0. For the stationary solution ¢y + 0 must be
real, and no degeneracy occurs for F=0.)

For an application of (11.74a, 75) for k = 0 to the quantum noise problem in
ring laser gyros and for the determination of the spectrum by a continued
fraction, see [11.10].

As discussed at the beginning of this chapter, we may look for the diffusion
constant of a particle without an applied force F. This problem was treated in
[11.46— 48] for the high-friction case where the Smoluchowski equation is
applicable. The result is that the diffusion constant D is given by the mobility in
linear response times the noise strength @. In Sect. 11.7 we shall derive this result
for arbitrary friction y. For the periodic potential model of Fig. 11.12, for
instance, it follows from (11.234, 66) that the diffusion constant is given by
D = (6/7) [cosh (fo/20)] 2.

11.4 Low-Friction Limit

If the damping constant and the external force are zero, the energy
E=10"+f(x) (11.83)

will be a constant of motion. (The Langevin force then also vanishes.) For very
small friction the energy will slowly vary in the course of time. In the low-friction
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limit the energy will therefore become the relevant or slow variable and position x
or velocity v will become the irrelevant or fast variable (Sect. 8.3). (In the high-
friction limit the position variable x is the slow variable, whereas the velocity v is
the fast variable.) If the friction is small the external force ' must also be small,
because otherwise the energy gain of the particles due to the external force F'
cannot be compensated by energy dissipation and no stationary solution would
exist in the low-friction limit for finite forces F. If

F=yF, (11.84)

it turns out that in the low-friction limit a stationary solution does exist for finite
FO.

A transformation to an energy variable for particles moving in an arbitrary
potential was already made in [Ref. 1.10, Vol. I, p. 115ff.]. However, in order to
obtain velocity expectation values, the method of [1.10] has to be modified so
that two separate energy distribution functions, one for each sign of the velocity,
have to be taken into account.

11.4.1 Transformation to E and x Variables

We now express the distribution functions W(x, v,?) by the space coordinate x
and the energy E. The lines of constant energy for a cosine potential are shown in
Fig. 11.15. To retain full information of the distribution function, we have to
introduce the two energy and space distribution functions, W, for positive and
W_ for negative velocities

W, (x,E,t) = Wx,v(x,E),1),
Ww_ (X,E, t) = W(x’ - U(X,E),t) ’

v(x,E) = +|/2[E—f(x)] . (11.86)

For further calculations the sum (S) and the difference (D) of W, and W_ are
sometimes more suitable:

(11.85)

Ws(x,E,t) = W, (x,E, )= W_(x,E, ). (11.87)
D

In this section we are looking for solutions of the Fokker-Planck equation
(11.33) which are periodic in x with period 27, i.e., W(x,v,t) = W(x+2m,v,1).
As shown in Sect. 11.5, the stationary solution must always be periodic in x. For
simplicity we assume that the potential has only one maximum and therefore
only one minimum in the period length 2 7. Assuming further that the maxima E|,
of the periodic potential are located at —n and n and that x; = x{(E£) and
X5 = x,(E) are the minimum and maximum values for the space coordinate for
E < E,in the region — n=x=n (Fig. 11.16), we require the following continuity
conditions for the distribution functions
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Wi(_n’E’ t) = W:t(n9E9 t) for E>E0 (11 88)
W, (x,E ) =W_(x,E,1) for E<E, or ‘
2 2
Ws(—m,E,t) = Wy(m,E, t for E>E
5 ¢ ) = Ws(mE.D) 0 (11.89)

WD(X1,E, t) = WD(XZ,E, t) =0 for E< EO .

] \ 3n
x
21
A
-0
Fig. 11.15. The lines E = const in the phase
space shown for the cosine potential f(x)
= —cosx. The bold curve corresponds to
the maximum E = E, =1 of the periodic
\ / potential. It separates the running from the
n oscillating solutions
-3 0 3
2 v —>
E=v"/2-cosx
X1(E) Xz(E)
’ E
f(x)
\ Eo
—
| =%
E .
=min
-n x4(E) X(E) W
. x -

Fig. 11.16. The periodic potential f(x), Ey, Ep;, and x;(E), x,(E) for E < E,. In the following
x((E)= — 7, x,(E) = mis used for E= E|,
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The Fokker-Planck equation (11.33) now reads for the functions (11.85)

—1? %Wi - :aiWiJr ya%[v(x,E) <1+@a%> :FO] W,
5 X
v0oE) (11.90)
and for (11.87)
1 9 3 3 3
= -2 w1y o E) (1+ 02 \wo—Fywi |
v(LE) ot §  ox D yaE[( )< 6E> s 0 %}

(11.91)

where Fyis defined by (11.84). It should be emphasized that W, are the distribu-
tion functions in (x, v) space. Those in (x, E) space would be obtained by multi-
plying W, with the Jacobian

) do 1 1 ‘ (11.92)
A, E)Y dE v(xE) 2[E—f(x)]

The distribution in (x, E) space is not introduced because the equations for W,
and W5 have a simpler form.
D

Expectation Values
The expectation value of an arbitrary function k(x, v) is given by

oo

Chx,v)> = § j{zh(x,v)W(x,v,t)dvdx

o X(E)
= j j [h(x,U(X,E))W+(X,E,t)+h(x,—U(X,E))
Emin X1(E)
X W (x,E, 1) SE9
w %) v(x, E) dEd
= T 1 Lihen oo, B+ b, — 006 EN] Walx, E, 1) d
Epyin x1(E) 2 v(x, E)
w XAE) 1 dEdx
+ § | =[x 006E) - h(x, — v(x, E)] Wp(x,E, 1) .
Epin x1(B) 2 v(x, E)

(11.93)

Here E,;, is the minimum energy of the potential. The minimum and maximum
values x(E) and x,(F) are — % and 7 for E > E,,. For h(x,v) =1 and h(x,v) = v
(11.93) specializes to

o X2 (E ) d
1= | Wi, E,0) (normalization) , (11.94)
Enin 31(E) v(x,
w %(E)
wy= | | Wp(,E,1)dEdx  (drift velocity) . (11.935)

Emin XI(E)
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11.4.2 ‘Ansatz’ for the Stationary Distribution Functions

In the stationary state (11.90) reduces to

oW, @ d
+ 2% ), O N E) 1+ 0— )| FF| W, . 11.96)
ax yaE{ < 8E> °} * (

If the distribution function does not change very rapidly in E, W, is thus nearly
independent of x in the low-friction limit y— 0. In this limit there is a motion
mainly along the lines £ = const, Fig. 11.15. The dependence of W, on energy is
determined by the small change of energy. The Langevin equation (11.3)
transforms for the energy variable (11.83) to

E= —2y[E—f(X)] £ yv(x,E)Fotv(x,E)I"  for {”zg : (11.97)
v

where v(x,E) is defined by (11.86). For the distribution function the energy
change is described by the right-hand side of (11.96). As best seen from (11.97),
the small energy gain yv(x,E)F, due to the external field for v >0 cancels the
small energy loss — yv(x, E)F, for v <0 if the motion is closed, i.e., for E < Ej,.
Therefore the distribution functions W, (E) and W_(E) are identical (and W}, is
zero), in agreement with the second boundary condition in (11.88 or 89).

For E > E, the motion of the particles for v > 0 and v < 0 is separated. There-
fore the particles may gain (lose) energy by the external field Fy, for v > v (x, Ey)
(v < —v(x, Ep)) and the distribution functions W, will be different for E > E,
compatible with the first boundary condition in (11.88). The distribution func-
tions W, and their first order derivative with respect to E should be continuous at
E = E,. As shown below this continuity condition of W, and their first order
derivatives cannot be fulfilled by taking into account only x-independent func-
tions. Therefore an x dependence must be considered near E = E, Because
32 W/0E? must be large if an x dependence is present (11.96), there is strong dif-
fusion perpendicular to the E = E, trajectory. This strong diffusion is expected
also from the following consideration. Particles moving along closed trajectories
near E S F,are confronted at each turn with two different groups of particles; in
one group the particles move upwards (v > 0) along trajectories near E z E,, and
in the other they move downwards (v < 0) along trajectories near E z E,, Fig.
11.15. Therefore strong diffusion perpendicular to E = Ej is also expected in a
boundary layer around E = E, from this consideration. Outside this boundary
layer near E = E, one expects that the distribution functions no longer depend on
x as discussed before.

We therefore make the following ‘ansatz’ for Ws(x, E) and Wp(x, E):

Ws (x,E) = W5 (E)+ ws (%, E) . (11.98)
D D D
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Here Wy (E) are slowly varying functions in E only. The wg (x, E) are rapidly
D D

varying functions in £ and slowly varying functions in x that contribute only in a
thin boundary layer (skin) around E = E,. As shown below, the thickness of the
skin is of the order of magnitude of |/y. As it turns out, the amplitudes of wg are
also of the order |/y. For small y values the distribution shifts in x direction near
the maxima at v = 0 proportional to yF,, Sect. 11.5. This shift cannot be treated
by ‘ansatz’ (11.98) by which, however, terms up to the order ]/y can be
calculated. For wg only terms in lowest order will be taken into account. In ac-
D

cordance with this approximation we put x(E) = Fr in w, (X, E). Thus the
2 2
continuity conditions (11.89) simplify for small y values to
ws(mE) =wg(—m,E) for E>E,,
D D (11.99)
wp(+ 7, E) = Wp(E) =0 for E<E,.

Because of the assumptions made for wg, the first derivatives in E are neglected
D

compared with the second derivatives in E. Furthermore the velocity need be
considered for E = E|, only. Therefore the stationary equations (11.91) for x-
dependent solutions reduce to

dwg /8x = yOuv(x, Eg)d’wp/dE?>. (11.100)
D S

Instead of the space coordinate x we introduce the variable u defined by

u=ux)=-—n+ fv(f,Eo)df/ﬁ(Eo), (11.101)

E(E)=?1— j{[v(x,E)dx=31— [ V2[E-f()ldx, EzE,. (11.102)
n n nT -=n

For the cosine potential

f(x)= —dcosx (11.103)
we have (Ey= d)

u=nsin(x/2), (11.104)

v(Eo) = 4)/d/n. (11.105)
Using (11.101, 102), (11.100) simplifies to

dwg /0u = yOB(Ey)d*wp/dE?. (11.106)
D S
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To get an equation for the slowly varying functions Ws , we take an x average of
D

the stationary equations (11.91), which is equivalent to a time average of the
Fokker-Planck equation along the trajectories £ = const, i.e. a time average of
(11.91) multiplied by v(x, E). As discussed before, F, does not change the energy
of the particles if the motion is closed, i.e. Fy must be omitted and Wy is zero for
E < E,. Because the constant probability current in E direction must vanish, we
finally have

E>EOZ
5(E) <1 + @i> Wi (E)— Fo Ws (E) = 0, (11.107)
OF S D
E<E0:
3\ -~ -
1+0 2 VW@ =0, WyE)=0. 11.108
< +@6E> s(E) b(E) ( )

In (11.107) #(E) is the x-averaged velocity (11.102) which is given by (11.141) for
the cosine potential (11.103).

11.4.3 x-Independent Functions

Equations (11.107, 108) are easily solved. The final result is [11.29, 30]

E< EO:

Wo(E)=0, Ws(E)=2Ne 79, (11.109)

E>E;

Wo(E) = e “¥/9{B cosh [Fyg(E)/ O] + C sinh [F,g(E)/ O]}, (11.110)

. 11.11

Ws(E) = e ¥®(Bsinh[Fyg(E)/®] + C cosh[Fyg(E)/ O]} .

Here g(F) is defined by (E = E,)

E

g(E) = [dE/H(E") (11.111)
Ey

and N, B and C are integration constants.

If the x-dependent functions wg and wp are not taken into account, we can
require only that the functions are continuous at E = E,,. Because of g(Ey) =0
this immediately leads to B=0and C =2N, i.e.,

W, = Nexp(—E/O) for E<E,,

! (11.112)
Wi =NeXp{—[E-TF0g(E)]/@} for E>E;.
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my

E EO Eml'n EO

Fig. 11.17. Plot of the distributions W (E)—(WS+ WD)/2 for positive velocities (right) and
W (E) = (WS D)/2 for negative Velocmes (left) for the cosine potential (11.103) with d/@ = 0.5,
Fo/|'©@=2. The full curves show the distributions in the limit of vanishing friction [according to
(11.112)], the broken curves hold for finite friction [according to (11.126, 127), ex=0.2]. To
simplify the plot the same normalization constant N was chosen for both cases. Therefore both
distributions here are the same for E < E,

— 7 o]
N '=)210 [ e /™ Odx 14z
-7 EO

d‘_’_(lf)_ e E®(cosh[Fog(E)/ @] —1}dE .

(11.112a)

A plot of the distribution function (11.112) is shown in Fig. 11.17. In lowest order
W, are continuous, their derivatives are discontinuous at £ = E,. (The derivative
of Ws is continuous but the derivative of Wy is discontinuous at E = E,.) In next
order the x-independent parts W, are not continuous, however, the full distribu-
tion W, (x, E) and their derlvatlves are continuous at E = E; (Sect. 11.4.4).

11.4.4 x-Dependent Functions

Solutions of (11.106) consistent with (11.99) and different from zero only in the
vicinity of Ejare (—n=su=<mn)

E>E0:

Wp = W, z Im{a,exp[— (1 +i) a]/n(E—E,)/0]) cos nu, (11.113)

ws = woy ¥ Rela,exp[—(1 +i)al/n(E - Ey)/ O]} sin nu, 11.114)
n=1

E<E,:

wp = wy T Imib,exp[(1 +D)a)/n+ 1/2(E— Eg)/ Ol cos(n+1/2)u, (11.115)
n=0

wg = W, f Re{b,exp[(1 +i)a)/n+1/2(E—-Ey)/Ol}sin(n+1/2)u. (11.116)
n=0
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Here a is given by
O/[2y5(Ey)] (11.117)
and the imaginary and real parts are indicated by Im{} and Re{}. The prefactor
wo= O WS (Ep+0)/ o (11.118)
is chosen so that the complex amplitudes a, and b,, are of the order of magnitude

one. In (11.113, 114) the terms with #» = 0 must be excluded, because they would
give x-independent functions, which are already included in WS (E).

Continuity Conditions at E = E;

We now require that at E = Ej, WS (x, E) and their derivatives with respect to E
are continuous

Ws (x, Eq—0) = Ws (x, Eo+0) , (11.119)
D D

W, (x,E)/0FE =9 W5 (x,E)/dE . (11.120)
D E=Ey-0 D E=Ey+0

Because wg(x,E) and dws(x, E)/OF are antisymmetric in u(x) we obtain by
inserting (11.98) and using Wp(E) = 0 for E < E)

ws(x, Eg—0) = ws(x, Eg+0) , (11.119a)
wp(x, Eg— 0) = Wp(Eg+0)+ wp(x, Eg+0), (11.119b)
dws(x,E)/OE |g_g,_o= dWs(X, E)/E |z, 10> (11.120a)
dwp(x, E)/BE g~ 5,0 = Wh(Eo+0)+dwp(x, E)/OE |g-Eyro- (11.120b)

The derivative of WD(E) with respect to E is denoted by a prime. The x-in-
dependent part of (11.119) for Ws(x, E) leads to

Ws(Eo—0) = Ws(Eo+0) = Ws(Eo) , (11.121)
whereas the x-independent part of (11.120) for Ws(x, E) gives
W (Eg—0) = WX (Eo+0)+O()/7) . (11.121a)

Because WS is slowly varying in E and wg is rapidly varying in E (11.121a) is only
correct in the lowest order term l/o [(11.121) is correct up to terms of the order
l/] One concludes from the continuity of the probability current for WS and
from (11.121) that the jump condition

W (Ep—0) = W (Ey+0) — Wi(Eo+0) Fo/[5(Ey) O] (11.121b)
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holds even in terms of the order W Introducing the constant » by
Wi(Eo+0) = wo = x O W (Eg+0)/ a (11.122)

and inserting (11.113 —116) into the continuity conditions (11.119a—120b) and
using (11.118), we have

Y bOsin(n+1/2)u= ¥ aPsinnu, (11.119a")
n=0 n=1

Y b¥cos(n+1/2)u=sx+ ¥ a¥cosnu, (11.119b")
n=0 n=1

Y OP-bN) )/ n+1/2sin(n+1/Qu= Y (—aP+a®))/nsinnu, (11.120a"
n=0 n=1

§ GBP+bN )/ n+1/2cos(n+1/2Qu=1+ § (—aP—a®))/ncosnu.
o 1 (11.120b")

Here the amplitudes with an upper index r (i) are the real (imaginary) parts of the
corresponding amplitudes. From (11.119a’ —120b") the amplitudes ¢, a®, b(®,
b and the constant  have to be determined.

Determination of the Constant x

Equation (11.119a’—120b’) must be fuifilled for all u values. To derive
equations for the expansion coefficients we may expand cos(n+1/2)u
[sin(n+1/2)u] into cosru [sinru] in the range —n=u=n (or vice versa). In
[11.30] the following expansions were used:

cos(n+1/Qyu=C,+ § C,.cosru,
r=1

C,=(—1)"[n(n+1/2)],

Co,=[(=D)""/(n+r+1/2)+ (=) "/(n—r+1/2)/7,

sinnu =Y S, sin(r+1/2)u,
0

r
Su=[(=0""(r—n+172)~(=1)"""/(r+n+1/2)|/7.
Inserting cos(n+ 1/2)u and sin nu into (11.119a’ — 120b’) and comparing terms

in cos ru and sin(r + 1/2)u, the following set of linear equations is obtained with
N = oo;
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N
b~ ¥ Spa)=0 (0=n=N),
m=1

N .
x— ¥ C,bP=0,

m=0
. N .
ad~ ¥ Cpubl=0 (1=n=N)
m=0
. N .
GBO—bN/n+1/2+ ¥ Spm@P—aym=0 (©O=n=N-1),
m=1
N .
Y bP+bN))/m+1/2Cp=1,
m=0
. N .
@0 +a®)/n+ ¥ CpndP+bD))/m+1/2=0 (1=n=N).
m=0

To solve this system a finite N was used in [11.30]. The number of unknown coef-
ficients is 4N + 3, i.e., N+ 1 coefficients b” and b) and N coefficients a{’ and
@'V and one . The number of equations must be the same. Therefore, the index n
runs only to N—1 in the fourth equation. By using a difference scheme, expres-
sion xy= 0.859 +0.476/(N+2) was found for N values in the range 10=N =18
in [11.30]. Extrapolation of this result to N— oo gives the value x = 0.859. More
accurate calculations lead to the slightly lower value [11.49]

%= 0.855(4) . (11.123)

11.4.5 Corrected x-Independent Functions and Mobility

Because of the boundary conditions (11.121, 122) the coefficients N, B, C of the
x-independent functions (11.109, 110) are now connected by

C=2N, B =xCFyg'(Ey)/all + O()/)] = 2Nex[1+O(/)] (11.124)
where ¢ is an abbreviation for

& = Fog'(Eo)/ a= Fo/(t(Eo) @) = [|/2Fo/)/5(Ep) @1 /7. (11.125)
Thus the x-independent functions correct up to the order |/ read:

Wsz 2Ne ¥©  for E<E,
(11.126)

Wy =2Ne ¥4 2Ne E/®cosh [Fog(E)/0]— 1}
+2Nexe FOsinh[Fyg(E)/®]) for E>E;
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Wo=0 for E< E
) (11.127)
Wo=2Ne ¥ 9sinh[Fog(E)/ @] + 2Nexe /€ cosh [Fyg(E)/O)

for E>E,.

Because the x-dependent solutions wgand wp, are of the order W and because
they are different from zero only in a region of width W around E = E,, the con-
tribution to the normalization and to the drift velocity is of the order y. Here we
consider only terms up to the order W Therefore, wg and wp, are neglected in
calculating the normalization and the drift velocity. The x-dependent solutions
enter via the continuity conditions (11.119, 120) in such a way that the corrected
x-independent solutions deviate from (11.112) by terms of the order W
Inserting (11.126, 127) into (11.94, 95), we have [x,(E) and x,(E) are defined in
Fig. 11.16]

o X2(E)
N7'=2 1§ | e ®®dEdx/v(x,E)
Emin X1 (E)

+2] | e EOosh[Fog(E)/ @) - 1}dEdx/v(x,E)
Ey —n

+2¢ex| | e EOinh[Fyg(E)/O®]dEdx
EO -n
= 47[(A0+A1+8){A2) ) (11128)

(v =2N| | e~9sinh[Fog(E)/O]dE dx
Ey —n

+2Nex| | e ®9cosh[Fyg(E)/O]dEdx
Ey —n

=47{N(A3F0+8}(A4). (11129)

The first integral A, on the right-hand side of (11.128) is equal to

Ag=—1 | Jeeor-roveqyg, - VITO § o rveqy (11430
47 "o “a 4 “x
Because
_ d‘ b4 n
v’(E):ﬂ:iijv(x,E)dxz_l_s dx ,
dE dE 27 “» 27 "z v(x,E)

we may write the other two integrals in (11.128) as
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Ay = [ (B)e F/®{cosh[Fog(E)/0] — 1}dE, (11.131)
Ey

Ay = [0 (E)e”¥¥sinh[Fyg(E)/O)dE . (11.132)
Ey

After performing a partial integration of the first integral on the right-hand side
in (11.129), we obtain for A; and A,

o o—E/O

As= [ £ cosh[Fyg(E)/O]dE, (11.133)
Ey, v(E)

Ay= [e FCcosh[Fyg(E)/O]dE . (11.134)
Ey

Taking into account only terms up to the order W, we finally get for the mobility
times the damping constant

yu=y(v)/F=(v)/Fy=C+D|/y/)@, (11.135)
-4 (11.136)
Ao+ A
po__xV2 < A _ g, A2y 2>. (11.137)
I/E(EO)l/é A0+A1 (A()+A1)

In the linear response (Fo— 0) (11.136 — 137) simplify to

[><]

C=E[[e'E/@/5(E)] dE/Ag, (11.138)
o
D=12x0e 59|/ 5(Ey) /O A . (11.139)
For the cosine potential (11.103) we have (E = d)
Ey=d, #(Ey)=4)d/n, (11.140)
5(E)=|/2-2E[2d/(d+E)/E+d/n, (11.141)
o' (E) = /2K [2d/(d+E)/(JVE+dn), (11.142)

Ao=/16/21(d/O) . (11.143)
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S O S O S S Y S Y S Y A T Y W S Fig. 11.18. The first expan-
sion coefficients C (a) and D
(b) of the mobility times
damping constant as a func-
tion of the external force
Fy/V/@=F/(y)/®) for dif-
ferent amplitudes of the
cosine potential (11.103)
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Here I is the modified Bessel function, K(m) and E(m) are the complete elliptic
integrals of first and second kinds [11.50]. For the linear response, D is thus
given by the simple analytic expression

_ X
1/ d/0e?01,(d/o)

D (11.144)

Because of the elliptic function in (11.138) we give only an analytic expression for
Cin the limit d/@ — o which reads [¢(F) is approximated by #(E;) = 4]/5’/7{ and
the modified Bessel function by (10.177)]

yu=C=(n/2yexp(-2d/@) for y-0, dO->x, F;-0,.
(11.145)

It is interesting to compare it with the large friction result y— oo (11.47) which in
the limit d/@— oo is given by



314 11. Brownian Motion in Periodic Potentials

P S S S S R SN N TR S SRS WA S S Fig. 11.19. The mobility times
the damping constant accord-
ing to the expansion (11.135)
(broken line) compared with
the exact result obtained by
the matrix continued-fraction
method of Sect. 11.5 (full
line), as functions of the
external force Fo/l/@ =
F/(y|/®) for different ampli-
tudes d/@ of the cosine po-
tential (11.103) and for y/]'®
= 0.05

T T T

0.0 0.5 10 1.5 2.0 25 30 35 4.0
FO/\/_O—’

yu=1y(d/@) 2 =271(d/@)exp(—2d/@) for y—o00,d/O—> o, F-0.
(11.146)

It is seen that both expressions have the same Boltzmann factor exp(—2d/@) and
differ by a prefactor of 4d/@. As may be seen from the expressions, C and D
(11.130-137) depend only on the combination d/® and Fo/l/@. In Fig. 11.18, C
and D are shown as a function of Fy/ 1/@ for fixed d/@ values [11.30]. Another
choice would be to plot C and D as a function of Fy/}/d for fixed d/@ values. As
discussed in Sect. 11.6, in the limit of zero noise strength C then shows a jump at
a critical force. In Fig. 11.19 the approximate result (11.135) is compared with
the exact result obtained in Sect. 11.5 by the matrix continued-fraction method.
It is seen that the fit is quite good for y/]/@= 0.05. For small d/@, one has
appreciable deviations. These deviations, however, are expected from our
derivation because the thickness @/« ~ |/y of the skin around E,should be smail
compared to Ey— E;, = 2d. This is not fulfilled for smali d/@ values. For large
forces Fy/ ]/@ there are considerable deviations, best seen from the curves for
large d/@ values, resulting from the shift of the distribution in x-direction which
becomes larger than the thickness of the skin.

11.5 Stationary Solutions for Arbitrary Friction

For intermediate friction constants y the position and velocity variables or the
energy and position variables cannot be associated with different time scales, as
in Sects. 11.3, 4. Therefore both variables x and v (or E and x) are now relevant
variables and the Fokker-Planck equation (11.33) for two variables must be
solved. As discussed in Sect. 10.1.4, we may first expand the distribution func-
tion in Hermite functions w,(v) (10.39, 40), see (10.43). Because (10.3) is
formally identical to (11.33) with v3 = @ and f' - f'— F, we use the Hermite
functions (10.39, 40) with vy, = |/@. For ¢ = 0 this expansion then reads
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W(x,v) = wo(v) focn(x) Wa(v) . (11.147)

In the stationary state the expansion coefficients do not depend on time 7. By
inserting this expansion into the Fokker-Planck equation (11.33) we obtain the
following special form of the Brinkman hierarchy (10.46a)

/1 D¢, =0

V1Dco+1yc,+)/2Dc, =0
V2Dci+2yc,+1/3Dcy =0 (11.148)

V3Dc,+3yci+ /4D, =0

=0.

For the cosine potential Tikhonov [11.21] already derived this coupled system of
differential equations (it appeared, however, in a different form). The operators
D and D are defined in (10.27). They read for the present case le=0; vy, = 1/@,
the derivative of the potential f” in Chap. 10 has to be replaced by the derivative
V' = f'(x)— F of the total potential (11.5)]

D=)0ddx, D=|0e/x+(f—-F)/o]. (11.149)

It is immediately seen from the first equation of (11.148) that the coefficient c,
must be independent of x

ci(x) = c=const. (11.150)

11.5.1 Periodicity of the Stationary Distribution Function

Because the function f” (x) in the Fokker-Planck equation (11.33) or in (11.148) is
periodic with period 27, the Fokker-Planck operator in (11.33) commutes with
the translation operator 7" defined by

TW(x,v)=Wkx+2n,v). (11.151)

Therefore the solutions of the Fokker-Planck equation can be chosen in such a
way that they are also eigenfunctions of this translation operator. Denoting the
eigenvalues of the translation operator by exp(ik27), we may therefore write
—1/2 < Relk} = 1/2 (k may be complex)

W(x,0) = e*ulk,x,vy, ulk,x,v)=ulk,x+2m,v), (11.152)

i.e., u is a periodic function in x. The expansion coefficients ¢, must then also
have the form

Cc(x) = e“‘"u,,(k,x) ,  uytk,xy=u,(k,x+2m). (11.153)
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~

It immediately follows from (11.150, 153) that £ must be zero if ¢; + 0. Hence,
stationary solutions with k& +0 can occur only if ¢; =0. By expanding the
periodic functions in (11.153) into a Fourier series and by using the down-
iteration procedure for solving (11.148), described below, we can express the
Fourier coefficients c§ in terms of those of cf. If ¢, is zero, c,(x) must therefore
also be zero and it then follows from the second equation of (11.148) that

colx) = Ne ™ V00 = NS0/ OeFx/6
cp(x)=0 for n=1.
Thus we have either the nonperiodic solution (F + 0)

2
W(x,v)=(27t@)_1/2NeXp<——v————f(—x)—+B—> (11.154)
20 O e

or the periodic solution
W(x,0) = W(x+27,v) (11.155)
or a combination of both, i.e., W.(x,v) = A W(x,v)+B W(x,v). Because
W(x+27nn,v)=expQnanF/@) W(x,v),

we then recover the form (11.39) obtained for the Smoluchowski equation. If we
require that the solutions are bounded, we must discard solution (11.154). Thus
the solution must be periodic in x in the stationary state and we therefore
normalize the distribution function in one period, i.e.,

1= T we,0)dedo = fetrydx.
0

— 0o

The drift velocity is given by

27 21 o

(vy={ [ oW(,v)dxdo= | { S(x,v)dxdov
0 —o 0 -
21 o

=1 [owo) gocnm Yn(v)dxdo

— 0o

= )@2nc. (11.156)
In deriving this result we used
vwo(v) = /OB +b") wo(0) = /Oy (v) (11.157)

[see (10.22, 38)], the normalization (10.41) and (11.150). It is seen from (11.33,
10.4b) that the probability current density in x direction is given by S, = v W.
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We conclude from (11.148, 149) that the coefficient ¢, = ¢ depends only on
the combination y/ 1/@, F/@© and f'/©. The mobility times the damping constant
may be written as

AN %ch. (11.158)

F Je

11.5.2 Matrix Continued-Fraction Method

yu=

To solve (11.148) we expand the periodic coefficients ¢, into a truncated Fourier
series

—-1/2 g D, ipx
c,(x)=02n) Y ocpe. (11.159)
p=-0Q

By introducing the vector notation

c, ¢
¢, = : (11.160)
2
n

the system (11.148) of coupled differential equations may then be cast into the
stationary form of the tridiagonal vector recurrence relation (9.10), where the
matrix elements of the matrices @, and @ are given by

O = —ny8pg, (@)= —|/n+1D", (Q;)" = —|/nD" (11.161)
with
Dri=Y=" l/@ e iPX "Ide:i\/@qap,, (11.162)
0 ox
and
pro= VO Femioe (2 I F iaxg,
2n o ox © e
=/Ol(ig—F/O) 8pg+f)_o/0]. (11.163)

Here f! are the expansion coefficients of the negative periodic force f*

S x)= Zf’ ha (11.164)
For the cosine potential f(x) = —d cosx (11.163) simplifies to

D" =1/0[(q—F/0)8p;—1(0p,q11— 0pq-1)d/2O)]. (11.165)

The elimination of ¢, with n = 2 leads to
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=S, (s=0)co, : (11.166)

where S (s) is given by (10.142). Because we treat the stationary problem here,
s = 0 has to be used. Expressing ¢, in terms of ¢; gives

co=He,, H=[S;(s=0)]"". (11.1662)

By slight manipulations of the continued fractions (10.142) it may be seen that H
can be written as [9.14]

-1 -1
H=—yﬁ—1{1—~12_D[I—LD{I—LD[I ]—113} 13} 13},
Y 2y? 3y
(11.167)

where D and D are the matrices with elements given by (11.162, 163). From
(11.150, 1662a)

cf =Y Hc{ =Y HPc|2nd,0= H c)/2x . (11.168)
q q

The normalization condition requires ¢ = (27) /% so that the drift velocity
(11.156) is finally given by

(v)y=)/O2nc=|/6/H®. (11.169)

-
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Fig. 11.20. The mobility times the damping constant as a function of F/© for various amphtudes of
d/ @ of the cosine potential f(x) = —d cosx and for y/|/ ‘o=1
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YWB —

Fig. 11.21. The mobility times the damping constant as a function of ]/ y/L@ for various amplitudes
d/@ of the cosine potential in linear response F— 0. The full curves were obtained by the matrix con-
tinued-fraction method [9.14], the broken lines, from the low-friction expression (11.135), and the
dotted lines are the results of the inverse friction expansion (11.59)

Thus, the main task in determining drift velocity or mobility (11.158) is calculat-
ing the matrix continued fraction (11.167). To evaluate this infinite continued
fraction, it was approximated in [9.14] by its Nth approximant. The number N
and the truncation number Q of the Fourier series (11.159) were determined in
[9.14] so that a further increase of N and Q did not alter the result of {v) beyond
a given accuracy. It turned out that the number N for giving results accurate to
three decimals was of the order Ny = 20]/6/y, and Q = 12 was sufficient for d
values up to d/@ = 4. In Fig. 11.20 the mobility times the damping constant is
shown as a function of F/@ for various amplitudes d/ @ of the cosine potential.
For large forces the effect of the periodic potential becomes negligible and
therefore one obtains the result yu =1 which is also valid for vanishing force
f' = 0. (This result is immediately obtained by averaging (11.3) in the stationary
state, i.e., {(X) =0, (x) = (v) = F/y.) In Fig. 11.19 the mobility times damping
constant was shown for very low damping constants. The result for a small
external force F (linear response) is shown in Fig. 11.21 as a function of |/ y/ ]/5
[To evaluate (11.167) for F=0 a small F must be used, because the expression
will become infinite for zero force.] For small damping constants the plots fit
very accurately with the low-friction approximation (11.135) and for large
damping constants with the high-friction approximation (11.59).
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11.5.3 Calculation of the Stationary Distribution Function

To obtain the distribution function (11.147) higher expansion coefficients
¢, = (cP) with n = 2 are needed. We now discuss two ways to calculate ¢,:

(i) Iteration of the Recurrence Relation
According to (11.168, 150) the Fourier expansion coefficients of cy(x) and
¢1(x) = c are given by [cd=(2 )~V

cf=H"/()/2nH®); f=6,0/()/2nHY). (11.168a)
By up-iteration of (11.148) one then obtains higher expansion coefficients. For
the Fourier coefficients c%, the system (11.148) takes the form (ci=0 for
ns-1)

V/nE DPcd_(+nycE+)/(n+1)Oipch =0. (11.170)
q

Thus, this up-iteration now reads explicitly for p+0; n =2

k= ! |:(n—1)ycf,’,1+ /n—1Y D"l , (11.1712)
p)/n@ 7

and forp=0; n=2

A= - ! Yy D%cd_,. (11.171b)

yV/n @

By starting with (11.168a) it is thus in principle easy to obtain both higher expan-
sion coefficients and also, with the help of (11.159) the distribution function
(11.147). This up-iteration, however, is numerically unstable. (Down-iteration
leading to the matrix continued fraction (11.167) is stable.) Therefore, up-itera-
tion can be performed only up to a n = N,. As revealed in [9.15], the magnitude
of the coefficients ¢ decreases (after an eventual initial increase) and after reach-
ing a minimum at N, again increases due to the numerical instability. By using a
higher numerical accuracy, the number N,, at which the numerical instability
becomes dominant, can be shifted to higher values. It was found in [9.15] that a
good check for convergence is the positivity of the distribution function.

(i) Iteration by the Matrices S,

As already mentioned in Sect. 9.2.1 the up-iteration of the tridiagonal scalar
recurrence relation is numerically unstable for the minimal solution, but the up-
iteration according to (9.28 a) is numerically stable. The same seems to be true for
the tridiagonal vector recurrence relation. As just discussed, the up-iteration of
(11.170) is unstable but the up-iteration according to the first two equations of
(10.141) with m = 0 and (10.142) seems to be numerically stable. If we use instead
of the matrices S, (s = 0) the matrices 4, defined by
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Ap

—y)/n+18, (s=0)
=[I-y *(n+1)"'DA,,,]7'D

=U—y2(m+ 1) 'DU-y *(n+2)"'DI-...}" D1 D] D
(11.172)

this up-iteration reads (n = 1):
Cp=(=p)""(n) V24, ,...A;Ayc,. (11.173)

To obtain ¢, all matrices 4,_,..., A, are needed. They do not have to be cal-
culated separately, however, because for calculating H = — yA, ' with the down-
ward iteration (Sect. 9.5.2) all matrices 4, with 1 =n <N are obtained in inter-
mediate steps. In contrast to the calculation in Sect. 11.5.2 all 4, with1 sn <N
must now be stored.

In Fig. 11.22, 22a perspective plots and in Fig. 11.23 altitude charts of the
distribution function obtained by the first method in [9.15] are shown for the
cosine potential f(x) = —d cosx. To simplify the labeling in the plots, the nor-
malization vy = vy, in (11.29) was used, i.e., @ = 1. If they exist, trajectories of
the running solution of the noiseless equation (11.3) as well as the position of its
locked solution are also indicated in the altitude charts. For the free-field case
(F=0), the distribution function is given by the Boltzmann distribution
W(x,v) = exp(—0v%/2+d cosx)/[(2n)*?14(d)], which is independent of the
damping constant y. For very large forces the distribution function is the shifted
Maxwell distribution W(x,v) = (21)~¥2 exp[— (v — F/y)*/2]. This distribution
is also the exact distribution for a zero potential (d = 0). Going from the bottom
to the top plots in Fig. 11.22, the transition from the Boltzmann distribution
towards the shifted Maxwell distribution is seen. For intermediate forces the dis-
tribution functions depend strongly on the damping constant y. For y values of
the order one or less, the distributions have a complicated shape. Let us now
discuss the plots by going from large to small friction constants.

For the large friction constant y = 5 the distribution is not very structured.
All plots have features similar to those of the distribution for F = 0, the maxima
of the distribution are shifted in the positive v and x directions, the amount of the
shift increases with increasing external force. Furthermore, the x variation of the
distribution becomes flatter with increasing field, whereas the v variation does
not change its shape appreciably. The trajectory of the running solution for large
friction constants y is approximately given by v = (F— d sinx)/y. The ridge of the
distribution agrees with the trajectory of the running solution (Fig. 11.23).

For y =1, significant deviations from the Boltzmann distribution occur at
lower forces F. The variation in x direction at the ridge of the distribution is no
longer symmetric with respect to the maxima. The tails towards the positive x and
v directions are due to an appreciable mean free path [see (10.10) for a definition
of the mean free path]. Because of the noise, the ridge deviates appreciably from
the trajectory of the running noiseless solution.

For y =0.25, the mean free path is about the period of the potential. In this
case, the distribution has a complicated shape for intermediate forces. For
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Fig. 11.22. Perspective plots of the probability distribution W (x, v) for different forces F (increasing
from bottom to top) and different friction constants 7 (decreasing from left to right) for a potential
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Fig. 11.22 (continued)
amplitude d = 1. All plots are shown in the range of = —5... +Sand x= - x.. .37 (2 periods)
using the normalization @ = 1
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Fig. 11.22a. Perspective plots of the probability distribution W(x, v) according to (11.112) for dif-
ferent forces F/y for d = 1 in the small-friction limit y— 0 (similar to Fig. 11.22) using the normaliza-
tion @ =1

F=0.25, only a locked solution exists, whereas for F=0.5 and 0.75 both
running and locked solutions exist. Whereas for F = 0.5 we still find a maximum
near the locked solution, the locked solution has a low probability for F = 0.75.
This is explained by the flat minimum of the total potential V(x), Fig. 11.2b.
(Because of the normalization @ = 1, the potential is measured in units of @.)
The distribution function has a ridge near the trajectory of the running solution.
At the steepest decents of the potential (11.5) the distribution function decreases
very rapidly for negative velocities, i.e., the probability for particles being at the
downward slope of the potential (11.5) and going in backward direction with an
appreciable velocity becomes very small. Near the wells of the potential (11.5) the
particles oscillate, thus having approximately the same probability for the same
positive and negative velocity (F = 0.25 and 0.5). The saddle point of the dis-
tribution for F = 0.5 is crucial in so far as particles with an appreciably smaller
velocity are trapped in the potential wells, whereas particles with an appreciably
larger velocity are not trapped, i.e., they move on to the next potential well.
For the very small value y=0.05 the distribution has maxima at v=0,
x=2nmn. For the forces F = 0.1 and F = 0.15 a ridge exists which agrees well with
the trajectory of the running solution. Except for E = d, the lines of constant
altitude agree well with the lines of constant energy. Whereas in the vicinity of
E=d [i.e., v = £2cos(x/2)] the distribution increases slowly in x for positive
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velocities, the distribution at F = d decreases rapidly for negative velocities, see
especially the altitude chart for F = 0.15. The low increase is explained by the low
diffusion constant y, the rapid decrease by the fact that the probability of
particles going backwards at the tops of the potential V(x) is very small.

Finally, in Fig. 11.22a the low-friction limit distribution (11.112) is shown. It
agrees well with the distribution for y = 0.05 for the same ratios of F/y. This dis-
tribution depends only on the energy. As discussed in Sect. 11.4, x dependence
must be taken into account in a skin around E = d for finite y.

11.5.4 Alternative Matrix Continued Fraction for the Cosine Potential

For the cosine potential f(x) = —d cos x the matrices D and D (11.162, 165) also
lead to tridiagonal coupling of the coefficients in the upper index. Introducing
the vector

o, =cl
oﬁ)=cﬁ’

a,= 7, (11.174)
o = ck

(11.170) can be cast into the two-sided tridiagonal recurrence relation
Qp_ap,1+Qpap+Qp+ap+1=0, (11175)
where the matrix elements of the matrices @, and Q,, are given by

@)™ =+1i)/nd, 1 m

(11.1752)
. ©® F — @ y @
@) =Vnlip——— )61 mtV/n+1lip—0,  m+n——o =6,,.
Qp) l/< d d 1, l/ pd n+1, l/@ d nm

For a two-sided recurrence relation a, with p#0 can also be eliminated. It
leads to

Moy=0, M=Qy+Ks(©0)+K; 0), (11.176)

where 1(73 (s) is the matrix continued fraction (9.112) and Ifo’ (s) is the corre-
sponding infinite matrix continued fraction for the elimination of a, with
negative p. Because ¢, = a* , the final expression for M can be written as

M = Qy+2RelK; (0)} .

Using an index notation, (11.176) then becomes

N
M"ol'= —-M™al; n=1,...,N. (11.177)
=1

m
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Because M°™ is zero we have discarded the equation with n=0. The term
a = (27) " V? follows from normalization. Therefore, (11.177) is an inhomo-
geneous equation for the N unknown coefficients ap. .. . The drift velocity is
finally given by [see (11.156) with mc =cV=af]

(v)=)210aj. (11.178)

The similar procedure in the high-friction limit suggests that the drift velocity can
be evaluated by this method for lower @/d values, if y is large. For smaller
friction constants y, however, the continued fraction described in Sect. 11.5.2
seems to be preferable, because for small friction the number N of expansion
coefficients of the Hermite functions is large and therefore the dimension of the
matrices which have to be inverted becomes large, too.

11.6 Bistability between Running and Locked Solution

As already discussed at the beginning of this chapter, two solutions, one locked,
one running, exist in the stationary state for zero noise, if the damping constant
is small enough. When noise is included, transitions between these two solutions
occur. In the low-friction limit it is even possible to define an effective potential

E tor E=Eo

or (11.179)
E T Fy4(E) EzE,.

VfF(E) = {

The stationary distribution function (11.112) is the Boltzmann distribution
W.(E) = Nexp[— Vi(E)/ O] . (11.180)

A plot of the potential (11.179) for the cosine potential (11.103) is shown in
Fig. 11.24. As seen for forces F, above the first critical force Fy,, a second
minimum corresponding to the running solution occurs. For forces F; in the
range Fy < Fy < Fy,, this minimum is higher than the minimum at E+d = 0 cor-
responding to the locked solution and therefore the running solution is not
globally stable in this region. For forces Fy > Fy, the minimum corresponding to
the running solution is the lowest and the running solution then becomes globally
stable.

For finite damping constants and for finite forces F it is not possible to write
the distribution function in the form (11.180) with a potential being independent
of the temperature @. [This is already seen by looking at the expression for x-
dependent solutions (11.113 — 116).] However, bistability of the locked versus
running solutions, just discussed for the low-friction case, seems to exist also for
finite damping constants y[/a < 1.193, Sect. 11.6.2.

Let us now investigate solutions without noise and then discuss the effect of
an added noise. With the exception of a special model, we restrict ourselves here
to the cosine potential.
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d+Vi g | d+V{ F Fig. 11.24, The effective potential (11.179)
15 05 1 as a function of E+d for various external
05' " 7/ is ; forces F,/}/d and for the cosine potential
it ;' f(x)= —dcosx. The effective potential
// A Viw(ViF) for positive (negative) velocitie§ is
’, EAD ya plotted to the right (left). The effective
- 12d ™~ y potential for the critical force Fy;/|/d = 4/
: ' ;38 is shown by a broken line and for the critical
E ! B 7 . force Fyy/1/d = 3.3576 by a broken line with

' E N L dots

Eed 2¢ [0 24 v E+d

11.6.1 Solutions Without Noise

Without the noise term, (11.3) becomes a deterministic equation, which reads for
the cosine potential f(x) = —dcosx

X+yx+dsinx=F. (11.181)

@ el ™=~ T~ “

Fig. 11.25. The trajectories of the
equation (11.181) or of the nor-
malized equation (11.181a) (v/]/@
b ® = dx/dr) going through the
(b) 9§ T e A saddle points for y/]/d=0.25
-5 0 5 10 and for F/d=025 (a) and

X —e— F/d=0.5 (b)
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L Fig. 11.26. The three critical forces F;/d,
o] 111 - F,/d and F;/d as a function of the friction
- T 3 - constant )}/1/ Vd f(;lr Ithe cosine 1()1otential
-2 (11.103). The straight lines —--— and — — —
T h F3/d F2/g e I are the low-friction approximations F; =
4 , - /7)) ]/Ziy and F, = Fg, y, with Fy, given by
F/d Ila -1Ib / | (11.196). The circles indicate extrapolations
§' /7 F/d for ®—-0 of the critical force F,/d cal-
w ] / i /' 1 " culated with the matrix continued-fraction
o - ’ L method. For the meaning of Regions I, Ila,
] /§' | IIb and 111, see text
] /’ I .
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By dividing (11.181) by d and using 7= ]/th instead of ¢ we obtain the normal-
ized version of (11.181)

d2x/dz*+(y/)/d)dx/dt + sinx = F/d . (11.181a)

Numerical results have been obtained in [11.51, 52]. For |F|/d < 1 the equation
(11.181) has two kinds of singular points, i.e., points where both x and ¢ vanish.
For zero velocity and for positions belonging to the maxima of the total potential
V(x) = —dcosx—Fx we have saddle points whereas for zero velocity and for
positions belonging to the minima of the total potential V' (x) we have focal
points. In Fig. 11.25a, b the trajectories of (11.181) going through one of the
saddle points are shown. In Fig. 11.25a only a locked stationary solution exists
whereas in Fig. 11.25b a locked and a running stationary solution exist. Note
that trajectories not going through singular points cannot cross each other,
because the solution of the second order differential equation (11.181) is
uniquely defined by v = x and x outside singular points. In Fig. 11.25b, the tra-
jectory going in the direction to the saddle point is a separatrix [11.26] which
separates the trajectories which finally spiral in one of the focal points (shaded
regions) from the trajectories which end up at the running solution (nonshaded
regions). In Fig. 11.25a all trajectories spiral in one of the focal points.

In Fig. 11.26 the “phase diagram” for the various possibilities is shown.
Because the total potential = —d cosx — Fx has no minima for F>d, only a
running solution exists for F > d, i.e., in Region III in Fig. 11.26. For F < d,
minima of the total potential (Fig. 11.2) occur, and therefore a locked and a
running solution may exist. For large damping constants, however, only a locked
solution exists (Region I in Fig. 11.26), whereas for smaller damping constants in
Region II both solutions coexist. Region I and II are separated by a critical force
F,/d, which depends only on 3/ 1/21 as secen from the normalized equation
(11.181a). The critical force Fy/d as a function of d/y* was obtained in
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[11.51, 52] by numerical integration of (11.181a), see also [11.24, 27]. As seen,
the region where both solutions coexist vanishes for damping constants
y/)/d z1.193.

For the model potential

fx)=2d(x/m)*> for |x|=m, f(x)=fx+27) (11.182)

the critical force F; can be obtained analytically. Integrating the equation of
motion X + yx+ f' (x) = F for an initial condition where the particle starts from

rest at x = — 7, the particle reaches x = + 7 only if F' = F. The explicit result for
F, reads
F_2amn ny/Vd (11.183)

d = 2]/ 4/712—()//]/&)2

for y/ ]/4_1 = 2/m. The critical force Fj, i.e., the limit force above which the total
potential V(x) = f(x) — Fx has no minima and maxima, is given by

Fy/d=4/m. (11.184)

For y/|/d = 2/ the critical force F; coincides with this critical force F; and no
bistability region is found for y/ ]/21 = 2/n. The model potential’s critical forces
F, and F; show a similar dependence on y/ ]/21 to F; and Fj in Fig. 11.26 for the
cosine potential. Because the particles in the potential (11.182) reach higher
velocities for a larger time interval than those in the cosine potential with the
same energy difference 2d, the damping force has larger influence in the model
potential. Therefore the bistability region of the model potential (11.182) already
vanishes for a y/]/d value smaller than that for the cosine potential.

The drift velocity of the running solution may be defined by (7 is the period
of the stationary running solution)

17 1 7 2r
(v)=—\vdr=— {dx=" 11.185
e T§ T § T ( )

and again can be obtained by numerical integration of (11.181).

Low-Friction Mobility Without Noise

For the low-friction limit the drift velocity as well as the critical force Fy can be
obtained exactly. This case will therefore be discussed in some detail. Introducing
the energy E = v%/2—d cosx and the force to friction ratio Fy=F/y as done in
Sect. 11.4, (11.181) is transformed into

%=y(F0—v)v. (11.186)
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In the first approximation with respect to y,

v=v(x,E)=|/2(E+dcosx),

_ (11.187)
E=const=F

can be used on the right-hand side of (11.186). The mobility, defined by (11.1,
185) reads

- 7{ dx —22 % 5@,

n)/2(E+d dE
(E+d cosx) (11.188)
&) =2—1— §|/2(E+dcosx)dx.

CI

[The averaged velocity ¢(E) and its derivative are given by (11.141, 142).]
Therefore

pe= y(vd/F=[5"(E)Fo] . (11.189)

0 1 2 3 4 5
GB/Vd—»

Fig. 11.27. The mobility times the damping constant of the running solution for the noiseless case
(dotted line) and the mobility u times the damping constant y as a function of the external force
F,/ ]/;1 in the low-friction limit including noise for various temperatures @/d (solid lines). For
©/d = 0.1 (11.136) was used and for @/d = 0.1, approximation (11.194)
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Fig. 11.28. (a) Qualitative plot of
mobility without noise as a func-
tion of external force. The arrows
indicate the behavior of the mo-
bility on increasing and decreas-
ing the external force Fj. In the
region Fy; < Fy < Fy; bistability
occurs. (b) Qualitative plot of
mobility with noise as a function
of the external force in the low-
temperature limit. At the critical
force Fy, the mobility jumps
from zero mobility to the mobil-
ity of the running solution with-
out noise and vice versa. For fur-
ther discussion, see text

The averaged velocity 7(E) in the stationary state E is determined by balancing
the energy gain due to the field, and the energy loss due to friction, over one

period according to (11.186)

T i1 T n
yFofvdt=yF, § dx=y{v?dr=y | vdx,
0 -n 0 -7

i.e., it is determined by

F0=i { vdx=3(E).
27'[ -n

(11.190)

Equation (11.190) for given F;, determines E which may be used to calculate yu,
from (11.189). The result is shown in Fig. 11.27 by the dotted line. This line starts
at Fy= (4/7))/d because (11.190) has solutions only for Fo = #(d) = (4/7))/d.
A qualitative plot of this situation is given in Fig. 11.28a, where yu as a func-
tion of the external force Fy is shown. Starting at zero force (point 0) and switch-
ing on adiabatically the force F, the mobility remains zero until the critical force
Fy3 = d/y is reached, where the minimum of the effective potential disappears.
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At that point C the mobility jumps to the value of the running solution (point D)
and follows it for increasing force (point E). Decreasing the force adiabatically,
the running solutions remain running ones, so that the mobility decreases accord-
ing to the curve DA and becomes zero for Foy = (4/7m) 1/21 (point A). It is seen that
for adiabatical switching hysteresis between the forces Fy and Fy; occurs. All the
other points in the region ACDA may occur if an ensemble of independent
particles is considered with a suitable mixture of particles in both running and
locked states.

11.6.2 Solutions With Noise

For a nonvanishing @ the Fokker-Planck equation (11.33) has to be solved. In
the stationary state this leads to a unique distribution function and therefore also
the mobility is a unique smooth function of the external force showing no
bistability. If the strength of the noise force is lowered, the mobility versus force
plots get steeper. In the limit of vanishing noise force (6 — 0), it seems that there
is a sharp jump at a critical force F,, where the locked solution jumps to the
running solution of the noiseless equation. Thus an arbitrary small noise force
seems to change the double-valued behavior of the deterministic equation to
single-valued. The critical force must lie in the bistability region of the deter-
ministic equation, i.e., Fy < F, < F,. With the help of the matrix continued-frac-
tion method (Sect. 11.5.2) we can calculate the mobility as a function of F/d. In
Fig. 11.29 the mobility times the damping constant is shown as a function of F/d.
It is clearly seen in this plot that for smaller @ the curve gets steeper, and a critical
force F,/d of about 0.8 seems to exist for the parameters of the plot. Unfor-
tunately, the matrix continued-fraction method of Sect. 11.5.2 does not

¥/d=05

Fld —=

Fig. 11.29. Mobility u times damping constant y as a function of the external force F/d for y= 1/3/2
and for various temperatures ©/d (full line). The corresponding expression for the running solution
without noise yu, = y(v),/F with {v) given by (11.185) is shown by the broken line
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work very well in the limit of small @, so that the critical force F, cannot be ob-
tained very accurately. To see this steepening, it is essential to plot yu as a func-
tion of F/d. If we plot pu as a function of F/@ as in Fig. 11.20, neither steepen-
ing nor critical force occurs. For further conclusions see the end of Sect. 11.6.3.

11.6.3 Low-Friction Mobility with Noise

If this section we shall discuss the low-friction limit in some detail. Here the dis-
tribution function can be obtained analytically {(11.112, 179, 180) and Fig.
11.24] and therefore also the limit @— 0 can be easily performed. As seen by
comparison with (11.126) the distribution function (11.112) is only valid for
small ¢ ~ |/y/@, see (11.125). If we perform the limit ®— 0, we still have to
require ¢ < 1, i.e., /@ must still be small. If we do not take into account the
terms proportional to [/y (11.135), the mobility times damping constant is now
given by (11.136), where 4,, A; and A5 are defined by (11.143, 131, 133) and
where v(E) and ¢’ (E) occurring in A, and A; can be expressed by the complete
elliptic integrals according to (11.141, 142). By numerical integration of the
remaining integrals, the mobility times the damping constant was obtained in
[11.29, 30] as a function of F;,/)/@ for @ values down to 0.03d. In Fig. 11.27 yu
is shown as a function of Fy/]/d.

For lower temperatures @ the exponents in the integrals 4; and A, lead to
high and narrow maxima, making numerical integration methods inadequate.
Then an expansion of the effective potential (11.179) near the minima is more
suitable. Neglecting lower-order terms like 1 and exp[ — F,g/0], the integrands
in Ay and A; are proportional to exp{— V{r(E)/@]. Because dg/dE = 1/5(E),
the maximum of the distribution function (minimum of the effective potential)
for E > d occurs at E, where E is determined by #(E) = Fy, i.e., by (11.190) for
the noiseless case. Near this minimum, expansion of the effective potential up to
second order

Vig(E) = E—Fog(E) = E—Fyg(E) + %FO% (E-E)? (11.191)

7

and using ¢'(E) = d'(E), #(E) = #(E) = F, in the integrand leads to

Al/z‘;'(E)=F0A3=iexp{[—E+g(E)F0]/@} fexp| — v(E) x?)dx
2 “o 2F,0

7'[F0@
29'(E)

exp[— ViR(E)/O] . (11.192)

Similarly, using Iy(x) ~ e/)/2rx for x— o, we get
A= [6/2)/d)] exp(d/©) (11.193)

and flnally (FO =Fy) [11.27]
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yu= Vb _ : (11.194)
1+ /70/Q2nd) expild+ Viw(E)/0)

Here u, = {v),/(yFy) is the averaged mobility of the deterministic motion with
energy E (11.189).

Let us now discuss the low-temperature approximation (11.194). For -0,
yu remains 0 for increasing Fy until the sign of the exponent changes from
positive to negative values. At the force Fy = Fy, determined by

d+Vig(E)=d+E—-Fyg(E)=d+Vip(—d)=0 (11.195)

the mobility jumps to the value of the noiseless mobility of the running solution
and is equal to it for F,> Fyy in this limit. Obviously (11.195) is the condition that
the two minima in Fig. 11.24 have the same value. The value of Fy, and the values
of E and yu, at this critical force have been calculated numerically from (11.190,
195) [11.27]

Fopp=3.3576)/d, E=5.6391d, yu = yug.o=0.9960. (11.196)

These parameters have to be compared with the critical parameters of the noise-
less equation, which read in the low-friction limit

Fy=@mn))d, E=d, Yle =

_ (11.197)

Fup=4d/y, E=1F%, ym=1.

For @=0.1d (11.194) agrees very well with the exact expression (11.136). For
©<0.1d, yuin Fig. 11.27 was obtained by using (11.194).

In analogy with the discussion of a force cycle in Fig. 11.28a in the noiseless
case, we make a similar consideration here in the limit @— 0 (Fig. 11.28b). An
adiabatic increase of the force from point 0 to A and B does not change the
mobility until B is reached. At B the mobility jumps to its noiseless value (point
F) and, on increasing the force further, increases further to D and E on the noise-
less curve. The decrease of the force F leads to the same curve EDFBAO. Thus
the ambiguity in the mobility of Fig. 11.28 a is removed in the stationary state. If
one starts with a distribution sharply peaked around the locked (running)
solution of the deterministic equation with forces Fyy > Fg, (Fy < Fy,), one obtains
transitions of the mobility from the lower to the upper (upper to lower) curves as
indicated by the arrows for small but finite temperatures @. By changing the
force in a nonadiabatic way, hysteresis effects should be found. To calculate the
transition rate and hysteresis effects, the time-dependent equation (11.33) has to
be solved (Sect. 11.9).

In Fig. 11.30 mobility is plotted as a function of temperature @ for different
values for the force F,,. Below the critical force Fy < F, the mobility finally drops
to zero for ®— 0, approaching @ = 0 with horizontal tangent. The critical curve,
given by (11.194) with F,, = Fp,, approaches the mobility of the running solution
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Fig. 11.30. Mobility u times damping constant y as a function of temperature @ for various external
forces Fy/|/d. The dotted line indicates the critical forces F = Fy,. It should be noted that the curves
for Fy = Fy, do not reach exactly the value yu = 1 for @ = 0, but end at the corresponding values of
the mobility of the running solution for the noiseless case. For the critical force Fy, this value is 0.996
(11.196)

without noise with vertical tangent, but the curves for higher external forces
approach the values of this noiseless mobility for @— 0 again with horizontal
tangent.

Conclusion

With the inclusion of noise the solution is unique even in the limit ®— 0 and no
coexistence occurs. Region II is therefore separated into a part I1a (only running
solution) and a part IIb (only locked solution). Hence, in the limit @— 0, the
only relevant curve in the stationary state is the line F,/d separating 11a and I1b.
Whereas for small p the critical force F, was calculated exactly [the slope
Fz/(y]/a) =Fyp/ 1/6_1 is given by (11.196)], only approximate values have been
obtained in Sect. 11.6.2 with the matrix continued-fraction method for larger
damping constants.

11.7 Instationary Solutions

Though some of the instationary solutions of the Fokker-Planck equation
(11.33) may be periodic in x, as always the case for the bounded stationary solu-
tion (Sect. 11.5), the instationary solution generally does not need to be periodic.
For calculating expectation values of expressions periodic in x, only the periodic
solutions are needed. If x is an angle variable and if we do not distinguish
whether a full rotation was made or not, we also require that the instationary
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solution must be periodic in x. If, however, we want to calculate the diffusion of
particles in an infinite periodic potential (Fig. 11.1), the nonperiodic solutions
must be considered.

Because of Floquet’s theorem [11.43 —45] we can make the ansatz for the

nonperiodic solution (k real)
1/2

W, o, )= | Wk x v, t)edk, (11.198)
-1/2

where W is periodic in x with period 2z. In (11.198) we assumed that k is
restricted to the first Brillouin zone. The periodic function W can be expanded in
a truncated Fourier series with respect to x and into Hermite functions with
respect to v as done before,

7 —ywe & 2 ipx
Wk, x, v, t) = yo(v)e Y ¥ Ak ey, (v). (11.199)
n=0 p=-Q

As in (10.43) we split off the factor exp[ — &f(x)/ @] because some expectation
values for € = 1/2 can then be written symmetrically. In the notation of Sect.
10.3, the complete set ¢”(k, x), in which the expansion coefficients c,(x, t) of
Wi{x, v, t) are expanded with respect to x [compare (10.129)], is then given by

0Pk, x) = @n) " V2elp+hx (11.200)

satisfying the orthonormality condition

of [p?(k, x)1* p(k', x)dx = ), ,6(k — k') (11.201)

— oo

and the completeness relation
1/2
Y § [oP(k, X)1* Pk, x)dk = d(x—x") . (11.202)
p —1/72

Using the vector notation (11.160), where ¢” are now the expansion coefficients
cP(k, t), we again obtain the tridiagonal form (9.10) with Q7 and @, given by
(11.161) and where the matrix elements of the matrices D and D read

DP(k) = l@(Zn)-lzfne‘i(‘”k)x B _ &) diarhxgy
0 ox O

=1/Oli(@+k)d,,—ef,_,/0], (11.203)
e~ €/p-q
A 1 iprkyx| O " F | gk
D"’q(k)=]/5(27z) fe il _— 4+ (1-g)Z- - — el@+kxdy
0 ox e e

=10 {lilg+k)-F/O1,,+(1 — &) f}_,/0}, (11.204)
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where f! are the expansion coefficients of f(x) as in (11.164). The transition
probability P(x, v, ¢ |x', v', 0) is the solution of (11.33) with the initial condition

P, 0,0|x,v,0)=0(x—x)d(v—1v"). (11.205)
It may be written as

wo(v) exp[—ef(x)/O]
L Wa(©) Wn(v)
wo(v') exp[—ef(x')/ O] nm
X 1f2 ¥ Qr) e TiekCT I GRe (k 1ydk, (11.206)
-1/2 p.gq

P, v t|x,v,0)=

where G4'7 (k, t) satisfies the initial condition
G2k, 0) = O Opq - (11.207)

Eigenfunction Expansion

The operator of the Fokker-Planck equation (11.33) Lgp and its adjoint operator
Lgp

G 9 9
Lgp=——v+—|yv+f-F+y0—|,
T ex e <y Sy au>

(11.208)

0

L§P=1)1+ <—yv—f’+F+y@——> 0

ox ov E

are invariant by the replacement x—x+2 nn for periodic potentials. Therefore
the eigenfunctions ¢,(k,x, v) and ¢, (k,x, v) of these operators, i.e.,

LFP(pn(k’x’v) —An(k)(pn(k’xrv)
LF+P(P; (k,x,v) = _An(k)(p;(kaxav) ’

(11.209)

can also be written in form of Bloch waves, i.e.,

(pn(k’x’v) = ll,,(k,x,v)eikx (11 .
i .210)
oF k,x,v) = uf (k,x,v)e **,

where u, and u," are periodic functions in x.
Inserting (11.210) into (11.209) leads to

(Lyp—ikv)u, —Ayuy,

(11.209a)

(Lip—ikv)u); = —2u;l .
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The orthonormality relation reads

27 o

§ 5 uyk,x,v)u,k,x,v)dxdv = 3d,,. (11.211)
00—

With the help of the completeness relation

172 ) )
§ X ut (e, x', v u,(k,x,v)e**Vdk = d(x—x")d(v—v"), (11.212)
-1/2n

which is assumed to be valid, it is simple to express the transition probability by
the eigenfunctions
P(x,v,t|x',v',0)
172

= | Yultk,x,v)u,k,x,v)e**=¥)e=W®qg (11.213)
-1/2 n

The eigenvalues are arranged in bands, as for the Smoluchowski equation. The
eigenvalues and eigenfunctions for k = 0 are determined in Sect. 11.9.

Calculation of the Generalized Dynamic Structure Factor

We now want to find an expression for the dynamic structure factor defined by
Stky,kyw) = Q1) "' {7198 (ky, ko, 1) dt, (11.214)
0

Sy, ko, 1) = (e X O+ kX Oy (11.215)

This structure factor plays an essential role in light and neutron scattering experi-
ments [11.15, 53, 54].

In the following we restrict ourselves to the case where the external force F
vanishes. In this case the stationary distribution is the Boltzmann distribution

2n
Wy(x,0) = Nyd(v)e /@€ N~1= fe/®0Ogx, (11.216)
0
The expectation value (11.215) can then be calculated by

o0 0 2nM o0 X o,
Sk, kpt) = lim M)~ {dx [ dv | dx' | dv'e”*¥elk”
M- — o — 00 -2nM — o

X P(x,v,t|x',v',0) W (x',v') . (11.217)

Because the stationary solution (11.216) was normalized in the interval [0, 2 ],
for the x' integration we have to divide by the number of these intervals. We now
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insert (11.206, 216) into (11.217). Because for periodic functions g(x) =
g(x+2n)wehave (—1/2<k=1/2)

o o . 2n 27 .
fe®gx)dx= Y e*?™ [e*g(x)dx = d(k) [ e**g(x)dx
y=—o0 0 0

— oo =

2n
= d(k) g g(x)dx
and 27
| 2nm = (j)g(x)dx k=0
lim — | e*g(x)dx for
M- 2M —2zM =0 k=+0.

Thus (11.217) can be different from zero only if k, and k, differ by an integer. (In
the language of a solid-state physicist, the difference between k; and k, must be
multiples of the reciprocal lattice vector, here equal to 1.) We therefore write

ki=L+k, ky=hL+k; -1/2<k=<1/2, (11.218)
where £k is restricted to the first Brillouin zone, and where /;, /, are integers.

By using the orthonormality condition (10.41) for w,(v), we finally obtain by
inserting (11.206, 216) into (11.217)

SUi+k,b+k,t)=2aN ¥ GEyk,O)M,_, M}, (11.219)
p.q

where M, and M, are defined by

Mr — (2 7_[) -1 ane—sf(x)/@ﬁrxdx ,
0
(11.220)

2n .
Mr: (2 7_[)*1 j‘e—(l—s)f(x)/@ﬂrxdx .
0

For £ =1/2, M, and M, are equal. The dynamic structure factor (11.214) can be
expressed by

SUh+k,b+k,w)=NY GEy(k,iw)M,_, M}, (11.221)
p.q

where G&%(k,s) are the Laplace transforms of the matrix elements G§§(k, ?),
i.e.,
G (k,s) = [ GBS (k) e dr. (11.222)
0

These matrix elements form a matrix Go,o(k,s) which can be obtained by the
matrix continued fraction [see (10.139, 140, 142) for m = 0], i.e., by
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(GEE(k,iw)) =Gy olk,iw) = [iwl - Ky(iw)] ™', (11.223)

Kyiw)=D[(iw+yI-2D[(w+2p)I
—3D[(iw+3y)I-...]7'D]1"'D1"'D. (11.224)

The matrix elements of the matrices D and D are given by (11.203, 204) with
F = 0. Thus the problem of calculating the dynamic structure factor is essentially
to evaluate the matrix continued fraction (11.224). The dynamic structure factor
(11.221) was obtained by Dieferich et al. [11.53] by integrating the truncated
coupled system of differential equations for the expansion coefficients ¢?, as
done for k = 0 in [11.13]. The structure factor for £ = 0 is needed in Sect. 11.8
for the calculation of various susceptibilities. As will be shown, the matrix
continued fraction (11.224) can even be evaluated for such small friction
constants so that the connection to the zero friction limit can be made.

11.7.1 Diffusion Constant

We now want to calculate the diffusion of particles moving in the infinite
periodic potential of Fig. 11.1 without an additional external force. (With an
additional force an additional drift due to the external force would be present,
see the remark at the end of this subsection.) If initially the particles are near
x = 0 they will diffuse to adjacent wells. For very large times they are distributed
over many wells, as shown in Fig. 11.31. As discussed in the beginning of this
chapter, the particles hop from one well to an adjacent well for large damping
constants, whereas for smaller y they move over quite a number of wells before
they get trapped in one and are then excited again to move to other wells. The
diffusion constant defined by either of the two relations

L im 4 () - x| (11.2252)
2 o dt
1.1 s
D = —lim —<x()~xO1 (11.225b)

Fig. 11.31. The transition probability (11.236b)
for the cosine potential (11.46) with d/@ =1 for
Dt=4
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describes the diffusion in the infinite periodic potential for large times (without
any drift velocity). It is easy to see that (11.225b) follows from (11.225a). The
reverse is also true if one assumes that ([x(f)—x(0)]*)/¢ can be expanded in
powers of 1/¢ (apply I’Hopital’s rule).

The diffusion constant is connected to the mobility. This was proved for the
Smoluchowski equation (i.e, for the high-friction limit of the Kramers equation)
in [11.46—48]. The simplest proof for Kramers equation seems to be the
following: Starting with (11.225a) and differentiating inside the expectation
value, we have

D = lim Ge(1) [x(5) —x(O)] ) = lim <o (1) {o(r')de'
t—>o0 t—o0 0

( (
= lim {¢o(®)v(t"))dt’' = lim (v () v(t— 1) )dT.
>0 (

t—o0(

The velocity correlation function <v () v(f— 7)) is different from zero only for
finite 7. For very large ¢ the correlation function becomes independent of ¢
(stationary process). Therefore, we may write (replace z by #,+ 1)

(w(O)v(t—1)> = (v(to+ ) v(t0)) .

Because the time integral of the stationary velocity correlation function is con-
nected to the dc mobility in linear response [compare (7.11b) for f— o and
(7.23)], we thus have in normalized and unnormalized units (indicated by an
index un)

D=0(R, (Hdt=0Ou=yu-0/y, (11.2262)
0

Dy = kTpyn = Pantun) KT/ (M pyy) - (11.226b)

The diffusion constant in a periodic potential is thus given by the diffusion
constant for free Brownian motion (3.19) multiplied by the factor yu = yu,ttun.
This factor was already obtained in Sect. 11.5 and plotted in Fig. 11.21.

11.7.2 Transition Probability for Large Times

The eigenfunction expansion (11.213) is very suitable to determine the transition
probability for large times ¢. For k = 0 and n = 0 the eigenvalue A,(k) is zero, for
k +0 or nz=1 or both the eigenvalue will be larger than zero. Assuming that
eigenvalues A,(0) with n > 0 are separated from the zero eigenvalue 1,(0) =0bya
finite value, only the term with n = 0 of expansion (11.213) will survive for large
times:

172

P(x,v,t|x',v,0) = | ug (k,x', 0" )ug(k,x,v) e ¥ e~ 2®idr - (11.227)
—-1/2
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For k =0 and F = 0 we have the stationary solution
A0 =0, uy0,x,v)= Wy, ui@©,x,v)=1,

with W, given by (11.216). For large times we need only the integrand for small
k. We therefore expand the eigenvalue 44(k) and eigenfunctions ugand ug into a
Taylor series

Lo(k) =0+ A k+ APk +. ..

uolk,x,v) = Wy+ulPk+uPk*+... (11.228)

ug (k,x,0) =1+uf Vk+ug Pk2+ ... .
Inserting (11.228) into (11.209a), we get by comparing terms proportional to k&

Lepul’ = iv— A" W, (11.2292)
and by comparing terms proportional to k2

Lepu = (iv— 2" ul’ - 2@ w, . (11.229b)
By integrating (11.229a) over the interval 0 = x <27, — 0 <v < o, the left-hand
side vanishes, because of the periodic boundary condition for u{. Since W, is
symmetric in v we immediately conclude that A" must vanish, i.e.,

/161) =0, LFPugl) =ivW,. (11.230)

Similarly, by integrating (11.229b) over the same interval, the left-hand side
again vanishes and we get

21 o
AP=if [ vufPdxdo. (11.230a)
0

From (11.230, 230a) A and u§" can be calculated.

Connection to the Stationary Distribution Function in Linear Response

With an additional force F the stationary solution W(F,x,v) has to satisfy
(Lyp—F0/30)W =0,

where Lpp is given by (11.208) with F = 0. For small F we make a Taylor series
expansion

W(F)= Wy+Fw+...

and we obtain in linear response for w
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0 v
LFPW:a_UI/I/Stz —Emt. (11231)

By comparing (11.231) with the last equation in (11.230), we get the relation
ull = —iow. (11.232)

The mobility is defined by

u=timS him L T owE x vydxdo= T | owdedo.  (11.233)
F-0 F F50 F 0~ 0 —o

By comparing this expression with (11.230a) and by using (11.232, 226) we thus
conclude that the second derivative of Ay(k) at £ = 0 can be expressed by

2
/132>=ii’1L2k) =@u=D. (11.234)
2 dk k=0
This relation was derived for the Smoluchowski equation (in the three-dimen-
sional case) by Festa and d’Agliano {11.46].
If we insert (11.228) into (11.227) and extend the integration to + oo, we
obtain (A’ = 0, AQ = D)

P(x,v,t|x',0",0)

§ W, 0) + k[ (x, v) + ug Ve, v") Welx, 0)] + ... }eik(x—x')_kzD’dk

= {Wylx,v) +i[u((,1)(x, v)+ u0+(1)(x’, 0") Welx, )l (x—x")/2Dt) + ...}
x exp[— (¢ —x")/(4D1))/)/nDt . (11.235)

Let us now consider symmetric potentials f(x) = f(—x). It then follows from
Lep(x,v) = Lgp(—x, —v) and from (11.229a) with A§? = 0 that u{ (x, v) must be
an antisymmetric function u§" (x, v) = — u§’(—x, — v). Similarly, one may prove
that also ug Dx,v) = — ug M(—x, —v) is an antisymmetric function. For
x'=v' =0 [ug V(0,0) = 0] (11.235) then reduces to

P(x,v,1]0,0,0) = [W(x,0)+ Ow(x,v)x/2D1t)+...]
x exp[—x*/(4Dt)]/)/nDt . (11.2352)

Here we expressed ué? by w (11.232).

Thus this transition probability is completely determined by the stationary
distribution W, the stationary distribution in linear response w and the diffusion
constant D = @u. If we integrate (11.235 a) over v we obtain the transition prob-
ability for the position coordinate
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P(x,1]0,0,0) = | P(x,v,2|0,0,0)dv = Py(x,]0,0,0) + Ot~ ¥?), (11.236a)

Py(x,1]0,0,0) = Ne /®Cexp[—x%/(4D1))/)/7 Dt . (11.236b)

For large #, Py is the leading term of this transition probability. As seen from Fig.
11.31, it consists of a smooth envelope and varies in the periodicity interval
according to the stationary distribution ~exp[—f(x)/@]. If we integrate
(11.236b) over the periodicity interval (¥ — 7, X+ 7) we obtain after replacing the
variable x by ¥ in the slowly varying envelope

P(x,1) = exp[-%*/(4D1))/|/nDt . (11.236¢)

If we multiply (11.235a) by v and integrate the resulting expression over v and the
periodicity interval (¥ —m,X+ 7), we obtain the leading term for large ¢ of the
probability current:

_ +n o
S()?,t)z_j § vP(x,0v,1]0,0,0)dxdv

X—7mT — o
= xexp[—X*/(4D1)|/|/4 =D’ . (11.237)

In deriving this relation we used (11.233, 234) and replaced x by ¥ in the slowly
varying envelope x exp[ — x*/(4Dt)]. As may be checked by insertion, (11.236¢,
237) are connected by the continuity equation

dP/8t+08/0x%=0.

By inserting the leading term of (11.235) into (11.217) we obtain an expression
for the dynamic structure factor (11.214) for small k; = k, = k and for small w,
i.e.,

Sk, k, w) =_1_je—iw’e*Dk2’dz=_1_ __1_2 (11.238)
27 0 2n iw+Dk
Finite External Force

For a finite external force we may define a diffusion constant by (starting at £ = 0
with the sharp value x(0))

D= _lim %([x(t) —x(N1? . (11.239)

1
2 toox
For large ¢ the expansion (11.228) can still be made, where W,, is now the station-

ary solution with an external force. The first coefficient of the eigenvalue expan-
sion can then be expressed by the mean drift velocity

AV =i¢vy
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leading to a (v )¢ shift of the x-dependent envelope of the distribution. Because
O W, /8v is now no longer equal to — v W, /@ (11.231), the diffusion constant is
no longer connected to the change of the stationary drift velocity due to an addi-
tional small force AF, as it is the case for F= 0.

11.8 Susceptibilities

As discussed in Chap. 7, the linear response function and its Fourier transform
(i.e., the susceptibility) describes the response of the system to a small time-
dependent external force. In this section we mainly consider two cases.

In the first case we investigate the linear response of the velocity of particles
moving in a periodic potential to an external force. After making a Fourier trans-
form, this response is described by the susceptibility y,(w) in (11.2a). If applied
to a superionic conductor, the frequency-dependent conductivity a(w) is propor-
tional to this susceptibility

a(w) = (e*n/m) x (@), (11.240)

where e is the elementary charge, » the density of particles and m their mass. (The
force per mass is given by e E/m, where E is the electric field.) The real part of
x»(w) describes the absorption.

In the second case we deal with the rotation of dipoles in a constant external
field, Sect. 11.1.4. Here, one is interested in the polarization, i.e., in the averaged
dipole moment times the density of dipole moments. If we apply a small addi-
tional time-dependent external field either perpendicular or parallel to the
external field (Fig. 11.6), in the stationary state there is only an averaged dipole
moment p, (f) perpendicular to or an averaged dipole moment p i(#) parallel to
the external field given by

p.(t) = po<sinp(?)),
D(8) = upl<cos () ) — {cos @)g] .

(11.241)

Here, (cosg) is the averaged value without the additional time-dependent

external field. The response of the dipoles to the time-dependent external field is

thus described by the susceptibility x , (w) (11.19). Because the energy dissipation
]

is given by the time average of P(t)F (1), the absorption is now proportional to
the imaginary part of wy, (w). Though the equation of motion, see (11.17), is
I

somewhat different to the first case, both can be treated in the same manner.
Furthermore we show that y, (w) can be expressed by x,(w).

Response Functions

We restrict ourselves to a cosine potential in case I. Applying the normalization
(11.29), the Langevin equation reads
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Case 1
X+yx+dsinx = F(t)+I(t), (11.242)
(KIrOre')y=2y0o(t—t'). (11.243)

If we divide (11.17) by the angular momentum of inertia, we have with ¢ = x for

Case 11
X+yx+dsinx = F, (¢) cosx—F| () sinx+ I'(), (11.244)

where the correlation function of I'(¢) is the same as in Case 1. The constants d
and @ are given by '

dzlloFo/Io, @ZkT/IO (11245)

and F, are normalized fields
I

Fﬁ(t) = qull‘I““)(t)/Io , (11.246)

where the index ‘un’ indicates the unnormalized fields in (11.17).
The Fokker-Planck equation corresponding to (11.242, 244) with (11.243)
reads

OW/8t = [Lyp+Ley(O1 W . (11.247)

Here, the time-independent Kramers operator Lgp is given by

4] . o] o] 4]
Lyp=—-v—+dsinx—+y—{v+6O—]), 11.248
e 0x ov ’ ov < 6v> ( )

and the time-dependent operator L (f) has the form

Case 1

Le(t)= —F(t)d/0v, (11.249)
Case II

Loy (8) = [ F. (¢) cosx +F (1) sinx] 8/dv . (11.250)

The stationary solution of (11.247) with L, (¢) = 0 is the Boltzmann distribution
(11.216) with f(x) = —d cosx.

The general expression for the linear response function was derived in
Chap. 7 (7.9, 10, 13), where it was further shown that the velocity response
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function R, ;(#) in Case I can be expressed by the velocity autocorrelation
function K,,(¢) (7.23). For the normalization (11.29) we have

R, (1) =K, (1)/O. (11.251)

By using (7.10, 13) and

LppcosxWy,= — sinx—a@— W,e,
v
(11.252)

Lgpsinx W, = cosxai W,0,
v

it is seen that in Case II the response function R ,(¢) (R (1)) of the normalized
dipole moment p l(t) P (£)/y to the normalized flCldS (11.246) can be ex-

pressed by the tlme derivative of the sine (cosine) autocorrelation function

R, ()= - %Kss(t)/@, Ky(f) = ¢sinx(¢) sinx(0)) (11.253)
Ry = - %ch(t)/@, Ko(t) = (cosx(¢) cosx(0)) . (11.254)

It follows from (7.24) and (11.251, 253) that the response function R, (¢) in Case
Il and R, ; (¢) in Case I are connected by

) d/d VY
d RO =— (- +7) Rt (11.255)

Susceptibilities

As shown in Sect. 7.3 the susceptibilities are the Fourier transforms of the
response functions. From (11.251, 253, 254) we thus obtain for the normalized
susceptibilities (y, = udy (““))

I

Ox,(w) = Izvvv(w) s
O x.(w) = {sin’x )y~ iwK(w), (11.256)
O x (@) = (cos’x)y—iwK (),
where K,,, K, K, are the half-sided Fourier transforms of the corresponding
correlation functions. The response to time-independent fields is described by the

static susceptibilities x,(0), x.(0) and x,(0). The static susceptibilities x,(0) and
X/(0) can be expressed by the modified Bessel functions I, according to
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02.(0) = Kyy(0)— Kiy(o0) = (sinx)y = % : (11.257)
02(0) = Kool0) ~ Koo(09) = <c05%0— ({08 ),)?
_,_eLe) <I1(d/@)>2' (11.258)
dly(d/®) Iy(d/®)
Here we have used
Kas(00) = ({5in)) = 0, Kp(9) = (<008 ))?. (11.259)

The static susceptibility x,(0) is identical to the mobility x4 in linear response
(Sect. 11.5). Because

= — dz(sinzx)st/@ .
=0

2
. d
Rv,L(O) =1, Rv,L(O) = =7 <E + )’> Rv,L

the connection (11.255) between the response functions R, ;(¢) and R (¢) leads
to the following connection between the susceptibilities y, (w) and x,(w):

d* (1, (w) — (sin’x)/0) = iw(w+p)’ Y(w)—iwiw+7y) . (11.260)

Matrix Continued-Fraction Expansion

The half-sided Fourier transform of the correlation functions and therefore also
the susceptibilities can be calculated by matrix continued fractions. Because
x,(w) can be expressed by y,(w), we need to calculate only K () and K. (w).
These correlation functions can be reduced to special values of the dynamic
structure factor (11.214)

Ko (w) =

cc

Te‘i“” {sin x(t) sin x(0)) dr
0 {cosx(t) cosx(0))

=@w2)I8A,1,0)+S(-1,-1,0) FSA, -1, w) FS(~1,1,w)] .
(11.261)

For the symmetric potential one may show [9.17] that §(1,1, w) is equal to
S(—1, —1, w) and that S(1, —1, w) is equal to S(—1,1, w). In Sect. 11.7 it was
already shown that this dynamic structure factor can be expressed in terms of the
matrix continued fraction (11.224), see (11.221, 223). Thus the only problem in
obtaining the susceptibilities is the evaluation of the matrix continued fraction
for the cosine potential, where one has to put k=0 and F= 0 in the matrix
elements (11.203, 204).



11.8 Susceptibilities 351

Results

We now discuss the results of the numerical calculation done in [9.17]. As seen
from the expressions, |/@y,, @, and @ x| depend only on the combination
/)@ and d/@. We first discuss the susceptibility X, for Case I, shown in Figs.
11.32-35. As already discussed, the absorption of energy is proportional to the
real part y, of this susceptibility which is shown in Fig. 11.32a for /@ = 1 and in
Figs. 11.34, 35 for d/@ = 2. For small damping constants the y/(w) curve has
two maxima. One maximum occurs approximately at the frequency wy = |/d: it
stems from the oscillations of the particles in the well of the cosine potential. The
other maximum occurs at w = 0: it stems from those particles which go over the
hills of the cosine potential. For large damping constants there is only one broad
absorption maximum at a finite frequency. This transition from a low value at
w =0 to a broad plateau is typical for a hopping process [11.15].

The eigenvalues of the Fokker-Planck operator (11.248) are discussed in
Sect. 11.9. For damping constants in the region 0.1 < y/ 1/@< 1, the frequency
Wmax = g, Where one of the maxima occurs, is given quite accurately by the
imaginary part of the complex eigenvalue belonging to an antisymmetric eigen-
function and with lowest real part, whereas the width A is given quite
accurately by the real part of this eigenvalue. The width A w of the maximum at
w = 0 is given quite accurately by the lowest real eigenvalue which belongs to an
antisymmetric eigenfunction.

For very small damping constants the maximum at ¢« = 0 will become very
large (~1/y), whereas the other maximum is finite. In Fig. 11.35 this transition
to the zero-friction limit, obtained in Sect. 11.8.1, is clearly seen.

- T T T T Ty
2 3 0 1 2 3
(a) -~ WABR  (b) - WA
Fig. 11.32. Real (a) and negative imaginary (b) parts of the susceptibility (Fourier transform of the

velocity autocorrelation function) multiplied by |/@ for d/@ = 1 as a function of the frequency w/|/@
for various friction constants y/|/@
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NP I U T . S Fig. 11.33. The negative imaginary part
times /@ as a function of the real part of
the susceptibilities for the parameters of
Fig. 11.32. The frequency varies along
the curve and is infinite at the origin

B, |
VBx. ] d/8=2 | 4“"-

o
0.0 0.5 1.0

ARy o

Fig. 11.34 Fig. 11.35

Fig. 11.34. Same as Fig. 11.32a, but for the potential d/@ = 2

Fig. 11.35. The real part of the susceptibility ]/@xv as a function of the frequency for some low
friction constants (solid lines). The leading term o{"(w) of the zero-friction limit (11.279) is shown
by the dotted curve

In Fig. 11.32b the imaginary part 1/@/ x4 is shown for d/@ = 1. The real part
of the Fourier transform of the averaged position (x) is given by Re{i{v)/w}=
[—x! (w)/ w] F(w) for real F(w). For large frequencies w = wy, {x) oscillates in
opposite direction to the field, whereas for smaller frequencies and large
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damping forces (x) oscillates in the direction of the field, similar to the motion
of a forced oscillator. For lower frequencies and damping constants (x)
oscillates again opposite to the field. This is explained as follows. The particles
which go over the hill of the cosine potential behave like free particles for small
friction. Because free particles show a displacement opposite to the harmonic
driving field, one therefore expects a positive sign of !’ for small frequencies
and small damping constants, if an appreciable amount of particles is excited
enough to go over the hill.

The imaginary part of y,(w) versus its real part (Cole-Cole plot) is plotted
in Fig. 11.33 for frequencies from w = 0 to w = o. For large damping constants
the Cole-Cole plot is approximately a semicircle whereas for small damping
constants it is approximately a full circle plus a semicircle. The impedance of an
electric circuit which consists of two parallel branches, one having an inductance
and a resistance in series, the other an inductance, a capacitance and a resistance
in series, reproduces approximately the same loci for varying frequencies. The
particles oscillating in the well of the cosine potential are described by the
resonant circuit in series, whereas the particles going over the hill may be
described by the other branch having an inductance and a resistance in series.

Next we discuss the susceptibilities x,(w) and y i(w) for the Brownian
rotation of a dipole in a constant field. Here the absorption of energy is propor-
tional to wy ! (w) or w X[ (w), respectively. The negative imaginary part x|’ (w)
is shown in Fig. 11.36b for d/© =1 and in Fig. 11.37b for d/@ = 2. For small
damping constants there is a pronounced maximum at wy,, = wy = 1/;1 similar to
Xo. For very small damping constants and d/@ =1 there another maximum
occurs at a frequency wj.x, Which should be considered as the third harmonic of
the frequency wpay of the main maximum. (Because of the damping constant and
because the frequency decreases with increasing energy, /. is less than 3 ..
This third harmonic is hardly visible in /() curve.) For d/@ = 2 the maximum
at Wy = Wy = 1/21 is more peaked for small damping constants because it is now
more closely related to a harmonic oscillator, Fig. 11.38. The real part x| (w)
plotted in Fig. 11.36a shows the typical behavior of the susceptibility of an oscil-
lator. The static value for w = 0 given by (11.257) is independent of the damping
force because the stationary solution is also independent of it.

The negative imaginary part X[ (w) of the susceptibility X)/(w) is shown in
Fig. 11.37a for d/@ = 1 and Fig. 11.39 for d/@ = 2. For small damping constants
a sharp peak occurs approximately at the second harmonic frequency
Wax = 2 W = 21/;1, as one may expect from the parametric oscillation of the
pendulum. A more precise location of this frequency for d/@ = 2 is given by the
imaginary part of the lowest eigenvalue with lowest real part which belongs to the
symmetric eigenfunction (Sect. 11.9), whereas the width is approximately given
by the real part of this eigenvalue. The absolute amount of the susceptibilities for
fields parallel to the static field is much smaller than that for fields perpendicular
to the static field, especially for large d/@. For d/@ = 1 the real part xjof xis
plotted in Fig. 11.37a, again showing the susceptibility of an oscillator with
frequency wpyay = 2wy = 2 l/c_i
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Fig. 11.36. Real (a) and negative imaginary (b) parts of the susceptibility x, (Fourier transform of the

time derivative of the sine autocorrelation function) multiplied by @ for d/@ = 1 as a function of the
frequency w/ 1/@ for various friction constants p/ [/@
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Y

Fig. 11.38. Same as Fig. 11.36b, but ford/@=2  Fig. 11.39. Same as Fig. 11.37b, but for d/@ =2

11.8.1 Zero-Friction Limit

Because the stationary solution is independent of y, in the zero-friction limit it is
still given by (11.216) with f(x) = —d cosx. (For small y it will of course take a
long time till this stationary solution is finally established.) In the zero-friction
limit a stationary autocorrelation function of some expression f(x,v) for finite
times ¢ can be obtained by averaging the initial values of the deterministic motion
with y = 0 with respect to this stationary distribution, i.e.,
@), v(@)f(x(0), v(0))
= J{feGe 0,0, 00, 0, ) F6,0") W', v )dx " do’ (11.262)

Here x(x',v’, 1), v(x',v',1) is a solution of the deterministic equation of motion
with y = 0 and F = 0 in the cosine potential, i.e.,

x=v, 0= —dsinx (11.263)
with the initial condition
x(x,v,0)=x", vx,v,0)=0v". (11.264)

Here we restrict the calculations to the velocity autocorrelation function and the
susceptibility x,(cw). The susceptibility x,(w) follows from y,(w) by (11.260)
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with y = 0. The susceptibility X(w) can be obtained with the same procedure;
the expressions, however, are more complicated.
Inserting in (11.216) f(x) = —d cosx and yy(v) we thus have to calculate

2n o
Ko =<v (D) v(0)) = [/2702nlo(d/@)] ' | | v(x,v', )0’
0 —o0
X exp[—v' Y2 ©)+(d/®) cosx'|dx'dv" , (11.265)
where I, is the modified Bessel function of zeroth order. For system (11.263) the
energy E = v%/2—dcosx is a constant of motion. Therefore the energy or a

function of it should now be used as one variable. Here it is convenient to
introduce the variable

2 ! 2 !
e=e(r,vy=Lr9 _ < v >+sin2i= < d >+sin2-);—. (11.266)

2d 2 wy 2 2wy

In (11.266) the frequency for small amplitudes is denoted by wqy= ]/EJ The
solutions of system (11.263) are oscillatory for & < 1 (i.e., librations in the case of
a dipole), whereas for ¢ > 1 they are of a running type (i.e., rotations in a case of
a dipole).

Instead of the variables x’ and v’ we use in (11.265) the energy (11.266) and
the angle ¢ defined by the integral

x d
=000 = ¢ .
02)/e(x',v')—sin?¢/2

(11.267)

The solutions of system (11.263) with the initial condition (11.264) may then be
expressed in terms of the Jacobian elliptic functions ([11.55]; for the elliptic
functions we use the notation of [11.50]) for

e<1l by

x(x',v',t) = 2 arcsin []/Esn(wot+ @, ¢)]

(11.268)
v(x,v',t) = 2wol/gcn(wot+ 0, €)

and similarly for

e>1 by
x(x',v', 1) = 2 arcsin {sn []/E(w0t+ ©),1/¢l}

(11.269)

v(x, v, )= iZwO]/Edn[]/E(wot+ ), 1/¢].
For ¢ = 0 (11.268, 269) express x’ = x(x’,v',0) and v’ = v(x’, v’,0) as a function
of ¢ and ¢. The period of the functions sn(g, €) and cn(g, €) is 4K(¢), whereas
the period of the function dn(g, ¢) is 2K(¢), where K(¢) is the complete elliptic
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integral of the first kind [11.50]. If we use the variables ¢ and ¢ in (11.265)
instead of the variables x', v’, the double integral is transformed to

1
Ko(t) = [1/2 102 114(d/0)] ™' 2 wp)? [g se‘wﬁ(ls-“/% (g, )de

12 [ee™@0@-D/OL (g t)ds} , (11.270)
1
with
4K (&)
Lie,t)= [ cn(wot+o,&)cn(p, e)de, (11.271)
0
and
2K(17¢)
Lg,t)= | dn[)/e(wot+¢),1/¢ldn[)/ep,1/¢]dg. (11.272)
0

In deriving (11.270) we have used the Jacobian of the transformation from x'
and v’ to the ¢ and ¢ variables

J=(dx'dv')/(dedg) = 2aq. (11.273)

The factor 2 in front of the last integral in (11.270) stems from the fact that the
velocity can have positive and negative values for ¢ > 1, see the last expression in
(11.269).

To evaluate the integrals (11.271, 272) we use the following series expansion
of the elliptic functions cn and dn (see 16.23.2—3 [Ref. 11.50]):

. n

cnum)= 2" § V‘}fﬂ cos| @n+1)— 4|, (11.274)

YmK(m) n=0 1+q~" 2K(m)
n 2n 0= q" nu

dn(u,m) = + ¥ 5 COS 2n , (11.275)

2K(m) K(@m) »=1t 1+gq°" 2K(m)
where the nome ¢ is given by
g(m) =exp[—nK{l —m)/K(m)] . (11.276)

By inserting the appropriate expressions into (11.271, 272) we can perform the
integration over g, leading to

8nlq(e) = q*"(e)
eK(e) n=o0 [1+g**(e)?

2 0 2n
12(8,t)=—n—{1+8 §_a7d) o <2nm>} (11.278)

Tl L (11.277)
2K(¢)

Ii(e,t) = cos {(2n +1)

2K(1/¢) a1 [1+q2"(1/¢)]? 2K(1/¢)
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The main frequency of the I;(¢, f) term is given by
w(e) = nwy/[2K(E)] = wo(l —e/4+...).

Because we are interested mainly in the susceptibilities we make a half-sided
Fourier transform of the correlation function (11.270). Further treatment is
restricted to the calculation of the real part y;(w). The imaginary part y.'(w)
follows from the Kramers-Kronig relations (7.42). Because

fcos at cos wtdt=% { cos ate“i‘”’dt=%[5((x— w)+d(a+w)l,
0 o

we can immediately perform the cos-transformation of I;(e, t) and I,(g, ). Due
to the J function we can then easily perform the integration over ¢ and finally
arrive at

Xiw) = o(@) = ¥ o)+ a(w)+ ¥ of(w). (11.279)
0 1

n= n=

Here the terms o{”(w) are given by

D w%K(e)q(s)Z””e_ wie—1)/0

(n) —
o1 (w) = , (11.280)
: /270 01y(d/0)2n+1)dK(e)/de{l + [q(e))"* 117
where the positive variable ¢ (0 = & < 1) is related to the frequency w by
w=twn+)n/[2KE)]; n=0,1,2,.... (11.281)

The derivative of the complete elliptic integral of first kind can be expressed by
the elliptic integrals of first and second kind, i.e., by K(¢) and E(¢) according to

dK(e) _ 1/ E(e) K() (11.282)
de 2 \e(l—¢) £ ' '
The term o{¥(w) reads
87w T me

o (w) = e~ Q- D/Od, 5(0y) . (11.283)

/210 61,(d/@) 1 2K(1/¢)

It has a J-function singularity at w = 0. For an external dc field the mobility is

proportional to 1/y for small damping constants, Sect. 11.5. Therefore the

response to a dc field must diverge in the zero-friction limit as shown in (11.283).
Finally, the terms ¢¥”(w) read

2 21 .~ wW2e—1)/0
() = 32 nwyK(i/e) e D)1/e qgl/e)”e 2” (11.289)
n)/2n @ Oly(d/@)E(1/¢) {1 +lg (/&)™

Here the variable ¢ > 1 is related to the frequency w by
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w= +2nn)/e2KA1/8)], n=1,2,.... (11.285)

The explicit values for o{”(w) and o§”(w) (n = 1,2,...) can easily be obtained
by applying the polynomial expansions for the complete elliptic integrals of first
and second kind [11.50]. For large d/@ = w3/0 values, o{’(w) is the leading
term. In Fig. 11.35 this leading term is plotted as a function of «w/ 1/@ for
w3/@ = 2. For large w?/@ we can simplify the expression still further. Making a
series expansion of g(¢), K(¢), E(¢) and an asymptotic expansion of 1,(d/@), we
obtain

oi(w) = 32710 2wl (we— w) e 3 @=9V0  for 0 < w=wy

" (11.286)
d(w)=0 , for wz=wp,
which has a sharp maximum o{,, at w.x given by
Omax = Wo— O/Bwg),  O{ax = (41/) /O . (11.286a)

This result can be derived directly from (11.265) by using the harmonic approxi-
mation for x and v with energy-dependent frequency w(E) = wy— (E—Epin)/
(8 wy) and by averaging over the energy.

11.9 Eigenvalues and Eigenfunctions

As discussed in Sect. 10.3.2, the cigenvalues and eigenfunctions of the Kramers
equation follow from (10.159) and the eigenfunctions from (10.158, 160). First
we want to apply this method to calculate the eigenvalues of the Fokker-Planck
operator (11.248) without the force F. Then we determine the eigenvalues of
(11.208) including F.

Eigenvalues for F =0

To calculate the eigenvalues with lowest real parts we need consider only (10.159)
for m = 0. Thus the final equation to determine the general complex eigenvalues
A is given by

Det[AT+Ky(—A)] =0, (11.287)

where K,(s) is the matrix continued fraction (11.224). Obviously the zeros of
(11.287) are the poles iw, = — A, of the Green’s function (11.223). We now
present the results obtained in [9.16] for the periodic eigenfunctions, i.e., for
k =0. In Fig. 11.40 the eigenvalues divided by 1/@ are shown as a function of
y/ ]/é for d/@=2 (A/ 1/@ depends only on y/ 1/@ and d/@). We may roughly
distinguish four regions of the damping constant. For large damping constants
(Region IV with y/ ]/@.>. 6) the eigenvalues are always real. They are grouped
together according to (10.201), the lowest ones (m =0) follow from the
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Fig. 11.40. The eigenvalues 1/)/@ of
the Kramers equation for the cosine
potential with d/© = 2 as a function
of the friction constant y/|/®. The
broken lines show real eigenvalues,
the solid lines in (a), the real part
Ar/]/é, and in (b), imaginary part
4/}/© of the complex eigenvalues.
For the complex eigenvalues the com-
plex conjugate is also a solution. The
numbers indicate corresponding real
and imaginary parts. The symbols
“s” denote symmetric, “a” antisym-
metric eigenfunctions belonging to
the eigenvalue. No symbols are given
if two eigenfunctions with different
symmetry are nearly degenerate. For
the lines, ---- denotes the lowest
oscillator eigenvalues, see (10.83);

- -- the inverted parabolic poten-
tial  eigenvalue, see  (10.108);
~~~~~~~ the Smoluchowski equa-
tion eigenvalues according to Fig.
11.14c; and — — — — in (b) are the
b extrapolated eigenvalues according
to Fig. 11.44

(a)

Smoluchowski equation (Sect. 11.3 and Fig. 11.14c¢). With the exception of the
zeroth eigenvalue they are twofold degenerate [see the discussion following
(11.82)]. For smaller y/]/@23 (Region III) this degeneracy is removed, the
deviation from the results of the Smoluchowski equation may be calculated by
correction terms to the Smoluchowski equation discussed in Sect. 10.4.2. For the
inverse friction expansion to be valid, it is essential that the different m groups of
eigenvalues (10.201) do not mix. As seen from Fig. 11.40, this essential feature
breaks down for those eigenvalues which become complex. The points where
complex eigenvalues occur are shifted to higher damping constants for higher
eigenvalues, therefore the validity of the inverse friction expansion is also shifted
to larger damping constants if higher eigenvalues are considered. For smaller
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Fig. 11.40b

d/8=2

| ‘ 5
(b) YA —

y (y/]/és3) we distinguish two regions for the complex eigenvalues, i.e.,
¥/)/® < 0.05 (Region I) and 0.05 < y/|/@ <3 (Region II). In Region I the real
and imaginary parts of the eigenvalues show square-root dependence according
to (11.301a) and Fig. 11.44. In Region II the real parts and roughly also the
imaginary parts behave like those of the harmonic oscillator according to
(10.83, 84). The real parts, however, have an additional constant term which may

-
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Fig. 11.41. The velocity integrated eigenfunctions (11.288) for large friction (y/ 1/® = 4) for'the lowest
two eigenvalues. The eigenfunctions are nearly degenerate and symmetric (s) or antisymmetric (a).
(Ordinate in arbitrary units)
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Fig. 11.42. Real &, and imaginary &; parts of the velocity integrated eigenfunction (11.288) in
arbitrary units. (a) For intermediate friction y/ ]f@ =0.125. (b) For low friction y/ ]/@= 0.025 the
eigenfunction contracts to small x values

be interpreted as the additional damping term due to the different frequencies
w(E) (11.292).

The imaginary parts of Curves 1, 3, 6 in Fig. 11.40 are appreciably lower than
the corresponding frequencies of the harmonic oscillator because the frequency
decreases with increasing amplitude. In Region II a complicated mixture of real
and complex eigenvalues is found. Consider for instance Curve 7. Two real
eigenvalues become two complex eigenvalues and again become two real eigen-
values for decreasing damping constant. Some of the eigenvalues remain com-
plex down to y = 0. In Region II the different asymptotic eigenvalues for large
and small damping constants mix together in a netlike structure. Because of the
symmetry of the problem the netlike structure decomposes into eigenvalues with
symmetric, respectively, antisymmetric eigenfunctions (10.166). Some of the
eigenfunctions (10.161) integrated over the velocity
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+ o0
d(x)= | d(x,v)do (11.288)

are shown for the cosine potential for different values of y/ 1@ in Figs. 11.41, 42,
For large »/ 1/@ values the eigenfunctions are real. They belong to nearly
degenerate eigenvalues, Fig. 11.41. For smaller y/ [/@ the eigenfunctions are
complex if the eigenvalues are complex, Fig. 11.42a, b. For very small y/ 1/@ the
contraction of the eigenfunctions (Sect. 11.9.1) is clearly seen in Fig. 11.42b.

Eigenvalues for F +0

The eigenvalues for F + 0 follow by the same procedure as used for F= 0, i.e., by
(11.287) with K, given by (11.224). For the matrices D and D in (11.224) the
matrix elements (11.203, 204) with F + 0 must be used. In Figs. 11.43a, b, c the
eigenvalues are shown as a function of the external force for three typical values
of the damping constant and for various noise powers ©. Because we are mainly
interested in the low temperature @ — 0 limit, we normalize the eigenvalue by the
frequency [/Zz’ (As may be easily seen from (11.208, 209a) for k = 0, by dividing
(11.208) by ]/c_z' and by using the normalized velocity & = v/]/d, the eigenvalue
divided by ]/Ez’ is a function of y/ ]/c_l', ©/d and F/d only. We now discuss the
results obtained in [11.28] by going from small to large friction constants. In
Fig. 11.43a the two lowest non-zero real eigenvalues are shown for the friction
constant y/ 1/21’ = 0.5, which lies in the middle of the bistability region
0 = y/)/d < 1.193, see Fig. 11.26. The most remarkable feature of Fig. 11.43a is
that the lowest non-zero eigenvalue tends to zero for decreasing noise power ®/d
for forces F/d in the bistability region (F; < F < F3). The explanation for this
behaviour runs as follows. Without any Langevin force (i.e., @/d = 0) (11.30a)
has two stable solutions, a running and a locked one. For finite noise strength
©/d one gets transitions between these two solutions. For ®/d— 0 the transition
rates and therefore also the eigenvalue must vanish. (For a further discussion of
transition rates see [11.28].) For finite but small noise power @ the stationary
solution W of the Fokker-Planck equation and some stationary expectation
values show a sharp transition at a critical force Fy(F; < F,<F;) as already
discussed in Sect. 11.6.2. As seen in Fig. 11.43a the lowest non-zero eigenvalue is
smallest at approximately F = F,. Thus a very long time is needed to establish the
stationary solution at this critical force. This is similar to the critical slowing
down at a second order phase transition which we find here for a transition
reminiscent of a first order phase transition. In the limit ©/d — 0 one expects that
the A/]/d curve as a function of F makes a sharp transition to zero if F reaches
the first critical force Fy and stays zero till F reaches the third critical force F;
where A/ 1/3 will jump to a finite value which is approximately given by y/ 1/3
This value is obtained as follows: For large forces F > d one can neglect the
periodic force in (11.30a) and thus obtains the damping constant A = y of the
Brownian motion without a potential. (The constant force can be absorbed in the
shifted velocity v;= v —F, i.e., one obtains for v, the equation v+ yv, = I'(¢) of
free Brownian motion.) For low forces F and low noise powers ©®/d the
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YNd =2

(c)

Fig. 11.43. (a) The two lowest non-zero real
eigenvalues A as a function of the external
force F for y/|/d = 0.5 and for various d/@
values. The critical forces Fy, F; are in-
dicated. (b) Some of the lowest non-zero real
(full lines) and complex (real parts — —,
imaginary parts ----) eigenvalues A as a func-
tion of the external force F for y/|/d = 1 and
for various d/® values. The critical forces
F,, F; according to Fig. 11.26 are indicated.
The letters a and b distinguish different
eigenvalues for the same d/@ ratio. (c¢) The
two lowest non-zero eigenvalues as a func-
tion of the external force F for y/|/d = 2 and
different d/@ ratios indicated in the same
style as in Fig. 11.43b. The dotted line is the
limit result 2 z/7T for the imaginary part, the
line —«—-— is the Smoluchowski result of
Fig. 11.14b for d/© =20

particles oscillate in a well which is approximately parabolic. The first non-zero
real eigenvalue in such a parabolic potential is given by y, see (10.83). (The devia-
tions from this value for finite @/d stem from the deviations from the parabolic
form.) As seen from Fig. 11.43a in the bistability region the next real eigenvalue
takes over the value A=y of the lowest non-zero eigenvalue outside the
bistability region for very low noise power @. Complex eigenvalues are also
obtained. They are not plotted in Fig. 11.43 a in order not to overload this figure.
The real parts of these complex eigenvalues did not show signs of critical slowing
down in the bistability region as was the case for the real eigenvalues.
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In Fig. 11.43b real and complex eigenvalues are shown for y/ 1/3 =1,i.e. just
near the end of the bistability region at y/ [/;1': 1.193..., see Fig. 11.26. The
lowest non-zero real eigenvalue still shows the critical slowing down in the
bistability region; however, it does not reach the low values as in Fig. 11.43a even
for the lower ®/d=0.05. For large forces the real parts of the complex
eigenvalues decrease for increasing F whereas the imaginary parts increase with
increasing F as in Fig. 11.43c. Thus at y/ 1/;1’=1 the eigenvalue dependence
shows features of the eigenvalues for small and large y/|/d. Therefore the
eigenvalues show a complicated structure in this intermediate region.

In Fig. 11.43c at y/ [/Zi = 2 we are well outside the bistability region and the
dependence of the eigenvalues on the force simplifies again. For F>d only a
running solution occurs for zero noise (@/d = 0). This running solution shows
oscillation in time with frequency components being multiples of a fundamental
frequency w = 2 n/T. If we neglect the second time derivative in (11.181) the time
to travel the distance 2z is given by (11.52). The imaginary parts of the eigen-
values with low real parts agree approximately with =2 n/T for F/d > 1 and
low @/d. For smaller forces F/d the imaginary parts of the eigenvalues disappear
and two real eigenvalues appear instead of the two complex conjugate ones.
(Because Lgp is real the complex conjugate of a complex eigenvalue is also an
eigenvalue of Lyp.) The bend in the real part of the eigenvalue at F = d for low @
may be considered as a rudiment of the critical slowing down of the lowest non-
zero real eigenvalue in the bistability region.

In the Smoluchowski limit in Fig. 11.14a, b the cigenvalues behave similarly
as in Fig. 11.43c. In contrast to Fig. 11.14b, however, the imaginary parts
disappear suddenly for decreasing F'in Fig. 11.43c. In Fig. 11.14b the imaginary
parts are zero for F = 0 only, though they have extremly low values for small ©/d
and F/d < 1. The real parts in Fig. 11.14a behave similar as those in Fig. 11.43c¢,
however, for smaller F/d a bifurcation is observed in Fig. 11.43c.

11.9.1 Eigenvalues and Eigenfunctions in the Low-Friction Limit

In the low-friction limit the energy E = v%/2+ f(x) becomes a slow variable, see
Sect. 8.3 for a discussion of slow and fast variables. Therefore one should use E
or a function of E like the action integral [1.17] as one variable. For the other
variable one may use x or the angle variable y. The x variable has the advantage
that no second derivatives in x occur (no diffusion in x), whereas for the angle
variable a second derivative in y does occur (diffusion in ). As it turns out, for
the real eigenvalues one should use E and x variables, i.e., (11.90) or (11.91) and
average over x as in Sect. 11.4, whereas for the complex eigenvalues it seems to be
more suitable to use E and y variables. Because the complex eigenvalues (at least
those with vanishing real parts for y —0) can be calculated analytically, we first
determine the complex eigenvalues.

Complex Eigenvalues

As the numerical solutions in Fig. 11.42b show, for very small damping con-
stants the eigenfunctions contract to the E region near E = E_;,, because the
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frequency depends on energy and therefore, due to diffusion in E, only the
oscillations with E = E,;;, will survive in the ensemble for y — 0. This effect may
be treated analytically as follows. For E and y variables the Fokker-Planck
equation (11.33) with F = 0 transforms to

W= [— w(E) -5 +Lir:| w, (11.289)
17

where w(E) is the energy-dependent frequency for y = 0 and L,, is the collision
operator (10.13) with v% = @. The reversible part in (11.289) follows from the
transformation of the reversible equations x = v, o = —f'(x) to the angle vari-
able equations y = w(E), E = 0 [11.57]. The angle variable w and the variable ¢
defined in (11.267) are connected by

v =[w(E)Y wyl ¢ . (11.290)

For small damping constants y, the 2  periodic eigenfunctions @ are assumed to
have the form which will be shown to be consistent with later results (v =1, 2, 3, ... )

W=®(E, e =e"h(E)e H+0(/y). (11.291)
The E-dependent function 4,(E) and the eigenvalue are determined by the collision
operator L. If we further assume that the eigenfunction A,(E) is different from
zero only near E =~ E_;,, we may approximate w(E) by

W(E) = wy+a(E—Eyy), (11.292)
where w% is the second derivative of the potential f(x) at its minimum. The follow-
ing calculations are applicable for an arbitrary potential with a single minimum.
We therefore give an expression for the constant a for an arbitrary potential with a
minimum at x = 0. Assuming that the negative force is

X)) = wix+cx?+c3x3, (11.293)

the constant & has the value [11.56]

_ do(E) 36 5 (11.292a)
dE |z_f 4 w(3) 6 w(S) ’

and for f' = d sinx
a=-1/@8)/d). (11.292b)

[The negative force f’ (x) may for instance be the negative force V7 (x) of the total
potential (11.5).]
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For the small collision operator we approximate the transformation to E and
w variables by the transformation for the harmonic oscillator, i.e., by (E = E;)

x=(/24/we)siny, v=]2Acosy with A=E-E,,, (11.294)
which leads to

2

8A4?

2

oy oa

L, = y{@(l +cos2y)A +[@+ A1+ cos2 )] %— Osin2y

2
+i 2—1 sin2wi+£(1—0052y/) 9 5 +1%. (11.295)
2\ 4 By 44 By
Writing
A=E—-Epn= £a)/@, (11.296)

where the complex constant ¢ is assumed to be proportional to 1/)1, we get by
inserting (11.291) in (11.289), using (11.292, 295) and neglecting terms of the
order |/ (higher harmonics are also of the order 1/7):

2 2 2
[5 aaAz +%—:—é+—r/@—u—ivwo)—iva“_ s} h,=0. (11.297)
& &€ Yy y

This equation is solved by

h,= "% 2LV (11.298)
provided that

ivaaz/y=%; A—ivawg) e/ (y)/O®) = n+ 1(v+1). (11.299)

For a definition of the Laguerre polynomials L{” and for their differential equa-
tions see [9.26]. Thus, we obtain (v=1,2,3,..., n=0,1,2,.. )

a= L Y <1—ii>, (11.300)
2 2via| la|

Am=1vay+Q2r+v+1) %Ia|@vy<1+ﬁi>. (11.301)
‘/ a

[The sign of « has to be chosen in such a way that the eigenfunctions (11.298)
decrease with increasing energy.] All the assumptions made in the beginning are
fulfilled by (11.298, 300). Therefore, we have found consistent solutions of
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(11.289) in the limit y— 0. Other solutions not fulfilling our assumptions may
also occur.

The present derivation holds only for v +0 and a = 0. For real eigenvalues or
for a strict parabolic potential the eigenfunctions do not show this contraction to
the minimal energy with width ~]/)_/. It may, of course, happen that a = 0 and
some other values of d"w(E)/(dE)" for E = Ey, are different from zero for
some special potentials f(x). In this case, one also gets a contraction to E = E 5,
but the dependence of A on y will then have a different form.

For the cosine potential, where a is given by (11.292b), (11.301) specializes to

Ap=ivog+ +2n+v+D)A-)]/vOy/ wo ,
w0=1/zl; v=1,2,3,...; n=0,1,2,....

The complex conjugate of (11.301a) is also an eigenvalue. In Fig. 11.44 the real
and imaginary parts of (11.301a) are compared with the results of the matrix
continued-fraction method, showing a very good fit for small damping con-
stants.

The eigenvalues and eigenfunctions can be used to obtain expressions for the
susceptibilities. As already mentioned in Sect. 11.8, the maximum at the finite
frequency agrees quite well with the imaginary part and the width with the real
part of one of the eigenvalues, if the damping constant is not too low. Because of
the contraction of eigenfunctions, more and more eigenvalues and eigenfunc-
tions enter for very small y, and in the limit y—0 an infinite number of eigen-
values and eigenfunctions must be used.

(11.301 a)

Real Eigenvalues

For the determination of the real eigenvalues, where the eigenfunctions depend
on the energy only, we have to average (11.90) or (11.91) over a trajectory
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E = const of the noiseless equation (11.263). For this purpose we first introduce
the action integral J(E) and its derivative defined by

X(E) X(E)
I(E)= 5 v(x,E)dx, I'(E)= T(E) = 5 [1/v(x, E)]dx . (11.302)
x(E) x(E)

Here x,(E) and x,(E) are the minimal and maximal x-values in the potential, see
Fig. 11.16. For E> E, we have x; = — 1, x, = +n and the averaged velocity
(11.102) is then given by the first part of (11.302) divided by 2r i.e.

5(E) = I(E)/2n) for E>E,. (11.303)

It should be noted that the usual definition I of an action integral for E < E,is
twice the value (11.302)

I(E) = $v(x,E)dx = 2I(E) . (11.304)

We do not use the definition (11.304) because the action integral would then be
discontinuous at E = Ej,. The time for one cycle for E < Ej is twice the derivative
of the action integral i.e., 2I' (E). For the potential —d cosx, I(F) and T(E) are
given by:
Ewin=-d=E=E=d
I(E)=38 VEI{E KE+d)/2d)] -1 —(E+d)/QdNKI(d+E)/2d)]}
=(n/)/d)(E+d)[1 +(E+d)/(16d)] for EzE.,
I'(E) = T(E) = (/)/d)K[(E +d)/(2d)]
~(n/)/d)1+(E+d)/(8d)] for E=E,,, (11.305 a)

E=FE,=d
I(E) = 4)/2(E+d)E[2d/(E+d)]
~2n|/2(E+d) - 2nd/)/2(E+d) for Es»d
I'(E) = T(E) = 4)/2(E+d)) K[2d/(E+d)]
~27/)/2(E+d) +2nd/)/2(E+d) for Esd. (11.305b)

Here K(m) and E(m) are the complete elliptic integrals of first and second kind
[11.50]. The action integral (11.305) and its derivative are plotted in Fig. 11.45.
At E = Ey, T(E) has a weak logarithmic singularity of the form

I'(E) = T(E) = (2/)/d)In(32d/|[E—d|) for E~d. (11.306)

If we average (11.91) over x or equivalently if we take a time-average of (11.91)
multiplied by v(x, E) we obtain
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As

discussed in Sect. 11.4.2 the force Fy = F/y drops out in (11.307 a) because of

the closed motion. The separation ansatz

Wo(E, 1) = dP(E)e ! (11.308)
S S



11.9 Eigenvalues and Eigenfunctions 37

leads to the following equation for the eigenvalues

A,=A,/y (11.309)
and the eigenfunctions $YP(E):

S

E<E,

S e (1+0- 4 ) eiarE er=o (11.3102)

dE dE 5

¢D = 0 s

E>E,

d d
— | IEY[(1+ 60— ) o - 27F @ | + AL (E) DM =0. 11.310b
i@ (1 ogs) op-axneg] ar@op-o. araon

Boundary Condition at E = E ;,
Because I(E) vanishes at E = E,;;,, we obtain from (11.310a) for E=E;,

d
I'(Egn) (1 + 00— ) o{N(E
( )< dE> s"(E)

i.e.,

Od S{NE)/AE|g g+ (Ap+1) B (Erin) =0. (11.311)

+ AT (Egin) P (Ein) =0,

E=Ewyin

Thus the derivative of ®$” can be expressed in terms of & and A ZAE=FE_;.

Continuity Condition at E = E,

Because the eigenfunctions (11.307) decay very slowly in time (the decay constant
is of the order A; = A, y) this time dependence need not be taken into account
inside the very thin boundary layer of thickness W, where a quasistationary dis-
tribution is rapidly established. We therefore use the same continuity condition
(11.121, 121b, 122) derived in Sects. 11.4.3, 4.4 for the stationary distribution,
i.e.,

DEVN(Ey—0) = P (Ey+0) , (11.312)

dPUE)Y/ AE |p-p,-0= A BEE)/AE | g_g, 10— Pp(Eo+0)2nF,/[I(E,) O]
(11.313)

5 (Eg+0) = xd 6 (E)/AE | pg, . o)/ yOI(Eg)/ 7 . (11.314)

The constant » = 0.855(4) was determined in Sect. 11.4. Without the boundary
layer, i.e., for y—0, (11.313, 314) simplify to
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d ®{NE)/AE |p_g,—o= d B E)/AE |p-Eyro> (11.3132)
S (Ey+0)=0. (11.3142)

The eigenvalues 4, = A,,/y are thus determined by (11.310 —314) and the require-
ment that &¢¥ and & vanish for E— o. The weak logarithmic singularity of
I'(E) at E = E, does not lead to serious difficulties.

Fo=0

Without the force F, the equations for @ and @ are decoupled. The equation
for the sum function &g does not contain any W term and the eigenvalues A&
should therefore not depend very much on y. The eigenvalues determined by a
numerical integration (Sect. 5.9.2) agree fairly well with those obtained by the
matrix continued-fraction method. The first non-zero eigenvalue for the cosine
potential with d/@ =2 is A1{¥/y = 0.848 whereas the matrix continued-fraction
for y = 0.2 leads to 1{%/y = 0.868. Because for the difference function &{, |/y
enters in the boundary condition, the eigenvalues A{® for the difference
functions should be of the form

APy = AP(0)/y+ B,y (11.315)

for small y. For the cosine potential with d/@ = 2 the numerical integration leads
to AP(0)/y=3.19 and A{?(0.2)/y =2.56 for the first eigenvalue. The last
expression agrees again fairly well with matrix continued-fraction result
29(0.2)/y = 2.64.
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0 o ;F;/ffd T 2‘ T Fig. 11.46. The ratio 4,/y for d/©@=10 as a

function of F,/}/d in the limit y— 0. The critical

Fo/{d— force F, /|/d = 4/ is also indicated
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Fo+0

For Fy % 0 the differential equations are coupled. The eigenvalues can again be
determined by numerical integration. (The eigenvalues A, and values
d &3)/dE | g_g, are determined by the requirement that both ¢§” and &{” vanish
for large E.) In Fig. 11.46 the dependence of some low eigenvalues obtained in
[5.32] on the external force Fy is shown for a low noise power in the limit y— 0,
i.e., for the continuity condition (11.312, 313a, 314a). As seen the eigenvalues
for small and large Fj are essentially given by A,,/y=n (n=0,1,2,...) for low
noise powers @; they are not degenerate for low F but nearly twofold degenerate
for large Fyy. This can be interpreted as follows. For low Fj the effective potential
in Fig. 11.24 has only one well whereas for large F;, two wells occur. For low
noise powers @ the wells are separated by a high barrier (d > ©). The eigenvalues
in the left and right well nearly coincide and are given by A,,/y = n for small © as
may be derived by expanding I(E) around the minima. Thus in the bistability re-
gion Fy > Fy; a degeneracy occurs. In the plot the transition of the nondegenerate
eigenvalues to the degenerate ones by changing F, from low to high values is
clearly seen. This transition at Fy, is similar to the transition at F; in Fig. 11.43 a.
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The Fokker-Planck equation has become a very useful tool for treating noise in
quantum optics. In this chapter we investigate noise in a laser, which is the most
important device in quantum optics. This subject together with other applica-
tions of the Fokker-Planck equation in quantum optics are already treated in a
number of handbooks, books and review articles [12.1 — 13, 1.28, 4.8]. The main
purpose of this chapter is to demonstrate how some of the methods of Chaps.
2—9 can be applied to a simple laser model (one mode, adiabatic elimination of
all variables with the exception of the laser field, threshold region). The follow-
ing two points make it difficult but also interesting to investigate the statistical
properties of laser light.

The first difficulty arises because we have to deal with a nonlinear equation.
The laser is a self-sustained oscillator in the optical frequency region. Such
an oscillator, where for a small initial value the amplitude increases in an
exponential way and finally oscillates with a finite fixed value, cannot be
described by a linear equation. One of the simplest equations which shows the
typical features of a self-excited oscillator is the Van der Pol equation [12.14]

(B>0)
J-28d-yH)i+wy=0. (12.1)

It was invented by Van der Pol to describe the amplitude of a self-sustained
vacuum-tube oscillator. A similar equation was already used by Rayleigh [12.15]

(8>0)
J-2B8ld— Y/ B wH)]y+wiy=0 (12.2)

to deal with self-sustained oscillations in organ pipes. Both equations have an
amplitude-dependent amplification or damping term. For small amplitudes and
positive d the damping constant is negative and therefore the amplitude grows
exponentially in time. For larger amplitudes this amplification decreases and at
last the amplitude reaches a finite value.

Rotating Wave Approximation

If the amplification is small so that the increase of the amplitude is small in one
period 1/, we can make the rotating wave approximation. Inserting
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y(®)=b(t)e ¥t
YO =b() e ' —iwb(f)e @ +c.c. (12.3)
JO)=b)e ' 2iwb(t)e ' - wlb(t)e @ tcc.,

(Where +c.c. means that we have to add the complex conjugate) into (12.1 or 2)
and neglecting the small underlined terms and higher harmonics, we obtain the
rotating wave approximation to (12.1, 2)

b-B(d-b*b)b=0. (12.4)
The explicit solution of this equation
b(t) = b0) ePU[1 + (€2~ 1) |b(0) |>/d] 1 (12.5)

shows for d > 0 the behavior of a self-sustained oscillator described above, Fig.
12.1. For d =0 no final amplitude will build up.

The second difficulty arises because of the quantum nature of the spon-
taneous emission noise. There may of course be other noise sources in the laser,
e.g., fluctuating pumping or fluctuating mirrors. Whereas the latter noise
sources can be eliminated in principle, the spontaneous emission noise can never
be eliminated, because it stems from the quantum nature of light. To include
spontaneous noise in a laser one should therefore treat the laser field as well as
the atoms or molecules, which drive the laser field, in a fully quantum-
mechanical way. Because of the large number of photons in the laser cavity (even
at threshold, this number is of the order 103), however, one may treat the
electrical field classically, i.e., neglect its operator character, provided that a
proper classical noise source is added. The strength of this classical noise force
can be determined so that it leads to the correct spontaneous emission rate, as
explained in Sect. 12.1.2. The atoms or molecules, which drive the laser field,
must always be treated quantum mechanically. This procedure is called semi-
classical treatment and will be used throughout this chapter. As also shown in
Sect. 12.1.2, the main result is that one obtains the rotating wave Van der Pol
equation (12.4) with a proper J-correlated noise term,

b-p(d—b*b)b=)/qI(t), (12.6a)

-1

Fig. 12.1.
Solution (12.5) divided by |/d as a function of Bdr. The initial value is given by |b(0)]/)/d=10"2



376 12. Statistical Properties of Laser Light
(L) =0, (IO*)y=46(t—-1")y, (I(OI({))=0. (12.6b)

In a fully quantum-mechanical treatment, Haken [12.16] first derived (12.6),
where b and b* are the operators b and b of the lasing field. If the operator
character is neglected, one then obtains the nonlinear Langevin equation (12.6).

By a proper linearization procedure one may solve the nonlinear Langevin
equation for large positive and large negative d [12.16]. For smaller d values the
nonlinear Langevin equation (12.6a) must be used. As discussed in Chap. 4, the
statistical properties of a process described by a nonlinear Langevin equation are
best obtained from the corresponding Fokker-Planck equation. The Fokker-
Planck equation corresponding to the laser Langevin equation (12.6) is set up in
Sect. 12.1.3. It was derived and solved for various cases in [12.17-33, 9.18,
5.15]. In connection with the self-excited oscillator, the Fokker-Planck equation
corresponding to Langevin equation (12.6) was also solved in [12.34] for the sta-
tionary state. A fully quantum mechanical derivation of this Fokker-Planck
equation [12.35 — 37] (for solutions of similar equations see [12.38, 39)) has been
obtained, whose main steps follow.

Starting with the equation of motion for the density operator for light field
and atoms, one derives an equation of motion for continuous distribution func-
tions. These distribution functions are defined in a way similar to that in App.
A4, where the quantum-mechanical damped oscillator is treated. By eliminating
the atom variables, one then obtains an equation for the distribution function of
the light field alone. The leading term of this equation agrees with the Fokker-
Planck equation corresponding to (12.6). A closer inspection shows that the
correction terms to this Fokker-Planck equation contain derivatives which are of
a higher order than two, i.e., the process is no longer described by an ordinary
Fokker-Planck equation. (In the case of the damped quantum-mechanical linear
oscillator in App. A4, only terms up to the second derivative occur.)

In Sect. 12.1 we derive the laser Langevin equation (12.6) and the correspond-
ing Fokker-Planck equation. In Sect. 12.2 the stationary solution and stationary
expectation values are obtained. In Sect. 12.3 the expansion of the instationary
solution into eigenmodes is discussed and correlation functions are derived. Bya
proper expansion of the distribution function into Laguerre functions it is shown
in Sect. 12.4 that the laser Fokker-Planck equation can be reduced to a system of
ordinary differential equations, with only four nearest-neighbor coefficients
coupled. By applying the method of Chap. 9, the system can be solved by matrix
continued fractions. In Sect. 12.5 various methods for obtaining the transient of
the laser are presented, and finally, in Sect. 12.6 the photon counting distribu-
tion, which follows from the laser Langevin equation (12.6), is investigated.
These photon counting distributions, which have been measured in great detail
[12.22, 40 — 46], confirm the theoretical predictions of the simple nonlinear one-
mode laser Langevin equation (12.6). (For a generalization to two-mode and
multi-mode lasers, see [12.1, 3, 47— 49, 4.8].)
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12.1 Semiclassical Laser Equations

12.1.1 Equations Without Noise

As discussed in the beginning of this chapter, semiclassical means that one
neglects the operator character of the light field and treats it as a classical
variable, but that the atoms are treated quantum mechanically. The laser
equations comprise the wave equation for the electric field, where the polariza-
tion is the driving force, and the material equations, which express the polariza-
tion and inversion in terms of the electric field. To make the equations as simple
as possible, we confine ourselves to a running wave single-mode ring-laser model
with N two-level homogeneously broadened atoms. The wave equation for the
electric field E polarized in x direction reads

2 2 2
afH%?ﬁ_cza’f:_La‘;, (12.7)
ot ot 0z &o ot

where » describes the losses of the electric field. The atoms near z = z, are
described by a density operator p®. Its equation of motion is given by [12. 3]

pW = —(/h)[H, p®]. (12.8)
The Hamilton operator

H=Hy—exE (12.9)
is a sum of a free field part H, and an interaction part —exE. The electric field
strength in (12.9) must be taken at z = z,,. Because we have assumed a two-level
system, the density operator can be expanded in the two eigenstates|1) and |2 ) of

the Hamilton operator H,

H0|1>=81|1>, H0|2>=82|2>
. (12.10)
<l|j> =5ij’ hwo =&—& .

From (12.8) it follows that the equation of motion for the elements p(“) [pj({‘)]*
= (i oW | /> of the density operator p® has the form

P18 =iwopld +ile/MxpE1pH) - pt1- y20l (12.11)

P - pH = iQ2e/h)x,Elply) - p¥01+ yilae/N— (o — p¥)] . (12.12)

In deriving (12.11, 12) we assumed that there is no permanent dipole moment in
the ground and excited states (1|x|1) = ¢(2]|x|2) = 0. The phase factors of the
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ground and exited states were chosen so that the matrix element xy;, = {1|x|2)
= X is real. The underlined terms in (12.11, 12) were added to describe damping
of the off-diagonal elements (— y,p{¥) and diagonal elements [ — y,(p% — p¥)],
and to include pumping (y, go/N). Equations (12.11, 12) are the Bloch equations
(y,=1/T,, y; = 1/T}) of the spin resonance theory [12.50]. The polarization in
(12.7) is the expectation value of the dipole moment per volume

P@,=4"" ¥ explp®)+p% )] . (12.13)

(z,—2)ed

Here we sum up over a number of active atoms situated at z,, which in turn are
placed in a volume element A around z. This volume element may be so small
that in it the electric field E(z,t) is practically constant, but so large that it
contains a large number of active atoms. Since we are concerned with a one-
dimensional ring laser with one allowed direction of propagation, the electric
field has the form of a traveling wave. Because of the relatively weak interaction
with the active atoms, the amplitudes will change slowly. Therefore we can make
the ansatz (V is the cavity volume)

th

&o

E(z,t) = @) exp[—iwy(t—z/c)] +c.c.}, (12.14)

where b(?) is a slowly varying complex function with respect to the period 2 7/ w,
(i.e., |b| < wo|b]) and where +c.c. means that one has to add the complex
conjugate. That b(¢) does not depend on the space coordinate z restricts the field
to one running mode only. Furthermore, it is implied in ansatz (12.14) that we
are restricted to the tuned case (wyl/c=n2mn), because the field must be
periodic with the cavity length L. The normalization in (12.14) was chosen in
such a manner that b*b gives the intensity of the electric light field in photon
numbers. Introducing

s(t) = ¥ p¥ expliwg(t—2z,/0)], (12.15)
u

a()= ¥ (p¥-pi), (12.16)
u

one obtains the following equations by inserting expressions (12.14 —16) in (12.7,
11 —13) and by neglecting antiresonant terms:

b+xb= igs
S+y,s=—igha 1217

o+ y(a—ay) =2ig(s*b—sb¥) .

Here the coupling constant is defined by
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(12)4 e’ 1
= w a N a :._—_z—, 12.18
= l/ v  dmeohe 137 (1219

where 1 =2nc/w, is the wavelength. The equations (12.17) have only a
stationary nonzero solution if the pump parameter gy is larger than the threshold
value of the inversion

Go> Opr = XV2/9° - (12.19)

This relation is the Schawlow-Townes [12.51] formula specialized to our assump-
tions. The steady-state intensity is then given by

b*b =L<ao—”—y22>. (12.20)
X g

Near threshold (g, = gy,) one can simplify (12.17) further. If the time variation
of b and s is slow in the times 1/y, and 1/y,, the inversion is approximately
given by

2 2
o=0,/ <1 + ib*b) = gy <1 - 49 b*b> . (12.21)
Y1V2 Y12

Inserting this approximate inversion into (12.17) leads, after neglecting the
(small) derivatives §, to the rotating wave Van der Pol or Rayleigh equation
(12.4). The parameters § and d in (12.4) are given by

B=4g%x/(y1y2), d= (00— om)r/(@Gx)]. (12.22)

12.1.2 Langevin Equation

To describe the spontaneous emission noise, we add a noise force to the rhs of
(12.4), leading to (12.6a). Usually the time constant 8d is much smaller than the
decay rate y, of the spontaneous emission process. In the slow time scale of the
variable b we can therefore assume that the Langevin force I'(¢) is J correlated. If
the spontaneous emission processes of the atoms are independent it is also
reasonable to assume that I'(¢) is a Gaussian variable. Because no phase can be
induced by the spontaneous emission process, the correlation function of the
Gaussian random variable is given by (12.6b), where the constant g must still be
determined. In real notation '

b=b1+ib2, I_'=I_'1+1F2 (12.23)
(12.6) takes the form

bi—pd—bi-bhb;=Vql;, i=1,2, (12.242)
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Fig. 12.2. The potential (12.25) with b, = 0 for the normalization (12.37) as a function of b; below
(a= —2) and above (a = 2) threshold. The full potential, V(b,, b,) with the b, axis perpendicular to
the plane, is the surface which is generated by rotating the potential curve in the figure as indicated by
the arrow

(TAOTH(t")y =28,;6(t—1"). (12.24b)

Equations (12.24) may be interpreted as overdamped Brownian motion in the
potential

V(bi,by) = — L Bd(bi+b3) + L B(bT+b3)*. (12.25)
This potential is shown in Fig. 12.2 for the normalization (12.37).

To determine the strength g of the noise force and for later purposes we
introduce the intensity and the phase of b defined by

I=b*b=0bi+b3, ¢=arctan(by/b,). (12.26)

According to (3.126, 127) the Langevin equations (12.24a) in the variables 7 and
@ now read

1-28(d-DI=2)/q)Icosply+2)/q)/Tsingl;
9= —)/q(sing/)/ I +)/q(cosp/ /D ;.

These equations lead to the following drift and diffusion coefficients for the
variables I and ¢, see (3.118, 119);

(12.27)

D; =2pd-DI+4q
DII = 4q1

(12.28)
D,=0

D,,=q/I.
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Instead of (12.27) we may equally well use the Langevin equations

[-2Bd-DI-2q=2)/qlI;

. (12.29)
p=—\q/ll,
with
(T (")) = L) Tp(8')) =26(t—1")
(12.30)

(LD T,(t)y =0

because they lead to the same drift and diffusion coefficients (12.28) in the
Stratonovich definition.

Linearization of the Langevin Equation

In the limit far below and far above threshold we can linearize the laser Langevin
equations in the following way.

Far below Threshold: (d< —|/q/f)

Here we may neglect the nonlinearity in (12.24a) and thus obtain the Langevin
equation of the Ornstein-Uhlenbeck process (Sect. 3.2)

b+ Bld|b;=/qI;. 12.31)

Far above Threshold: (d>1]/q/f)

Here the amplitude of the intensity is stabilized at 7 =d. This follows from
(12.49, 51) for a > 1, if we use the normalized units (12.37) (see also Fig. 12.4).
Writing

I=d+Al, (12.32)
we again obtain for A7 an equation for an Ornstein-Uhlenbeck process

AI+2BdAI=2)/qd I, (12.332)
whereas for ¢ we obtain the Wiener process (Sect. 3.2)

o= —Vq/drl, (12.33b)
with I, I, given by (12.30).

Determination of the Constant q

As explained in Sect. 3.3.2, the drift coefficient D, is the expectation value of the
time derivative of I starting with a fixed value (), i.e., (1>0)

@)y = 11n(1)<1(t+ )= 1))/ 1=D;=2B(d-DI1+4q.
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Using (12.19, 21, 22) it becomes
(L)Y = 2(g¥/y2)) (N, — N\ ) [ 2xI+ 4q, (12.34)

where the inversion No = N, — N, is the difference of the number of atoms in the
upper and lower states. The first term in (12.34) describes the induced emission
rate, the second the loss rate due to the cavity losses. To obtain the correct
quantum-mechanical spontaneous emission rate, we require

q=Ng*/2y,), (12.35)

according to the Einstein theory of radiation. (For simplicity we neglected the
number of thermal quanta, which is very small for laser light.) The number N, of
atoms in the upper state depends on b*b, because the inversion depends on it,
l.e., Ny=(N+0)/2; however, near threshold N, and therefore g may be
regarded as constants.

For our simple model we thus now know the constants 8, d and g of the basic
Langevin equation (12.6a, b). If only one mode is involved, near threshold we get
the same form as for other models, with only the constants 8, d, ¢ differing
[12.1].

For a detuned laser 8 and d are complex [12.53].

Fluctuating Control Parameter

Whereas the spontaneous emission is described by an additive fluctuating force
in the Langevin equation (12.6), we may also consider noise sources, where the
pumping or control parameter d fluctuates. A theory of this process was given by
Graham [12.52], see App. A6.

12.1.3 Laser Fokker-Planck Equation

With the help of (4.944a, 95, 99, 100), it is easy to write down the Fokker-Planck
equation corresponding to (12.24):

oW _
ar

—,B%i(d—bz—bz)b~+q§ o’ w (12.36)
iZ1 8b, b abob, | '

or in vector notation [12.17a] b = (b,, b,)

—Z—T+BV[(d— BB W]=qgAW. (12.36a)

Here, the nabla operator V and the Laplace operator A act with respect to b.
This final equation depends only on three parameters 8, d, g. Whereas para-
meters #and g are constants for each laser, parameter d is variable and describes
the strength of the pumping (d <0 below, d = 0 at and d >0 above threshold).
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Normalization

For numerical purposes it is convenient to introduce the normalized variables
b=/q)"*b, I=)B/ql, t=)Bqt, a=)p/qd. (12.37)
Equation (12.364a) is then transformed into
OW/dt+V [(a— |bHbW] =AW, (12.38)

which depends only on the pump parameter ¢ (¢ <0 below, a =0 at, and ¢ >0
above threshold). The bar over V and A indicates that one has to differentiate
with respect to b. Thus in the new variables (12.37) the constants f# and g are

normalized to 1, whereas d is replaced by a. In polar coordinates, b = Fexp (i),
this Fokker-Planck equation has the form

2
—a”_/+i_ 9 [(a—FAF*W] = i_%< 8W>+i 9 ’f (12.39)
r r

ot FooF or

The scaling parameters |/(q/f8) and 1/ ]//7(} can be determined experimentally
by measuring the photon number in the cavity and the linewidth of the intensity
fluctuations near threshold [12.42a]. The Fokker-Planck equation correspond-
ing to (12.27) or (12.29) is easily obtained. Using the same normalization (12.37)
it reads

2 2
LS _[2(1 af-a+- 2 ar+ L 2 {y (12.40)
ot or* I 0¢

This equation follows also from (12.39). Because the volume element transforms
according to

db;db, = FdFdp = Ldidg,

the distributions W and W, normalized according to

® ™ _ _ © 2T
[ [ wdb,db,=| | Wdldp=1,
—® —® 00

differ by a factor of 2, i.e.,
Wb, by 1) =2W(, 0,1). (12.41)

An equation for the averaged intensity

[

i

")y = | [I"wd,p,0)dIdg (12.42)
0

St g
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is obtained by multiplying (12.40) with I” and by performing an integration by
parts

D)y = 2na ('@ — 2n (I @)y + 4n2 (1D . (12.43)

12.2 Stationary Solution and Its Expectation Values

The stationary solution of (12.40) cannot depend on the phase ¢ because no
ppasg is preferred. The equation (12.40) for determining the stationary solution
Wi (I) may be written as

Ay
ol

,  Si= —Zf{(i—a) W, +2 a;VI_“]. (12.44)

Here, Sris the probability current in the I direction, which is a constant because
of the first part of (12.44). This current must originate either from the origin or
from infinity. In the present case, it has no physical meaning to assume a current
Srdifferent from zero. Furthermore, it can be shown that for Sy=+ 0 the distribu-
tion function Wst(l— } does not go to zero sufficiently fast enough for /— co. When
S7=0, the stationary distribution function follows immediately from (12.44),
viz.,

WD) = - exp(~ 117+ Lal) = 2 e exp [~ L (T-a)1],
2n 2n
(12.45)

4

N-1= (5) exp(—+71%+ Lal)di = Fy(a) .

The stationary distribution W, = 2 W, is shown in Fig. 12.3 for different pump

parameters near threshold. It is a Gaussian distribution in the intensity / = F?
with the maximum value at I = g truncated at / = 0.

Calculation of the Moments

The moments M, and the generating function M (x) of the moments of the
stationary distribution function are given by

M, = "y = F,(a)/Fy(a), (12.46)
M(u) = (€™ = Fo(a+2iu)/Fy(a), (12.47)

where the integrals F, are defined as

F.(a)= (j)f”exp(——%l_2+%a1—)d1_. (12.48)



12.2 Stationary Solution and Its Expectation Values 385

Fig. 12.3. The stationary distribution (12.45) as
a function of the normalized intensity I = 72 for
various pump parameters a

The moments M, can be reduced to the normalization integral Fy(a) with the
help of the recurrence relations

M, = a+2/Fya), (12.49)
M,=2(n-1)M, ,+aM,_,, (n=z=2). (12.50)

The recurrence relations may be derived by using partial integrations in (12.48).
Equation (12.50) also follows from (12.43) for the stationary state. The normali-
zation integral Fy(a) can be expressed by the error functions erf and erfc (see
[11.50] for a definition) according to

Fo(a) = |/nexp(+a®) [l +erf(La)], (12.51)
= /nexp(La)[2—erfc(La)], (12.51a)
= |/nexp(La®) erfc(— La). (12.51b)

To calculate Fy(a) one may use the series expansion of erf (a/2) [Ref. 11.50, Eq.
(7.1.5)] for |a| = 5 and the continued fraction expansion of exp(a’/4) erfc(|a|/2)
[Ref. 11.50, Eq. (7.1.14)] for |a|>5, see also (9.43). The F,(a) may also be
expressed by the parabolic cylinder function (9.49). If follows from the asymp-
totic expansion (9.50) that the moments M, (a) become infinitely large for n — oo,
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Fig. 12.4. The first moment Iy =M, (a) (solid line) and the asymptotic expansions
Iy = 2/|a|—8/|a|3 for a< —1 and (I) =a for a1 (broken line) as a function of the pump
parameter a. The unnormalized intensity </ (in photon numbers) is valid for threshold photon
number ~4000 from [12.42a]

The first moment (IY = M(a) is shown in Fig. 12.4 as a function of the pump
parameter ¢. In unnormalized units the intensity is

(I(a)y=1q/B(@)) . (12.52)

Thus ny, = |/q//>’(1_(0)) = MZ/ 1/;: is the number of photons at threshold,
which, for example, Arecchi et al. [12.42a] have found to be about 4000 for their

experiment.

Calculation of the Cumulants

Because the generating function K (#) of the cumulants K, is the logarithm of the
generating function of the moments [see (2.25)], i.e.,

K@) = ¥ [(iu)"/n'1K, = InM(u)
n=1

InFo(a+2iu) - InFy(a), (12.53)

the cumulants K ,(a) are derivatives of each other (n = 1)

d” d . ., d” d .
K, (@) =———— — InFy(a+2iu) =2 —InFy(a+2iu)
(diw)" diu u=0 da" diu w0
n
Y k@29 K@) (12.54)
da” da

In Fig. 12.5 the first seven cumulants are shown as a function of a. For relations
between cumulants and the moments, see (2.26 —29). It is worthwhile to note that
the magnitude of the maximum of the cumulants K,(«) increases with increasing n
in the threshold region for n > 3 and becomes infinite for n — oo. It is therefore not
possible to solve the moment equations (12.43) in the threshold region by putting
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e e Fig. 12.5. The first seven cumulants (12.54) as
functions of the pump parameter a

one of the high cumulants K to zero. (One would then obtain a finite closed
system for the moments.) By putting some moment My equal to zero a solution
of the tridiagonal moment equations (12.43) is not possible either above
threshold, as shown in Sect. 2.2 [see the remark following (2.30)].

12.3 Expansion in Eigenmodes

As explained in Sect. 2.4.1, the complete information of a Markov process is
given by the transition probability density. In the present case this transition
probability is the Green’s function of the Fokker-Planck equation (12.38, or 39
or 40). As discussed in Chaps. 5 and 6, the Green’s function can be expanded into
eigenmodes. Assuming periodic boundary conditions in ¢, the expansion of the
transition probability density may be put in the form {12.18 —20]

P(F, 9, 1|7, 9',0) = b v

27[; llloo(f’)

XY T WP (P e e Al (12.55)
n=0y=—-

where y,, are the eigenfunctions and 4,, are the eigenvalues of the one-dimen-
sional Schrodinger equation
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AWy /AF?+ Ay — V(P Wy = 0 (12.56)

with the potential

2 e
Vv(r')=v—2+ !//oo(fi) (-1 iz+a+ RIS P
7 weolr) 4)F a 2 2

(12.57)

Because of (12.41, 45, 55) the eigenfunction g, belonging to the stationary
eigenvalue Agy = 0 is

woo(F) = |/2FN exp <— %F“ + %af2> . (12.58)

The y,, (7) are assumed to be normalized. Thus, because of the orthogonality, we
have

g l//vn(F) an’(ﬂdf: 6nn’ . (1259)

Expression (12.55) is a Green’s function of the Fokker-Planck equation because,
as one may verify by insertion, P is a solution of (12.39) and because of the com-
pleteness relations

8GF=7) = T WP WunlF) » «5(«»—«»')=2L L e, (12.60)
n=0 T v=—0

the initial conditions are given by
P(7, 0,07, ¢',0)= i_é(r'— F)o(p—o')=0(b—-b"). (12.61)
F

To obtain numerical results, one must calculate the eigenvalues and eigenfunc-
tions of the Schrédinger equation (12.56). Only below (¢ < —1) and above
(a > 1) threshold can this Schrodinger equation be solved analytically (except of
course for the stationary solution ). Thus, one may use either approximations
(for instance, variational methods [12.17b, 5.15]) or a numerical integration of
the Schrodinger equation [12.18 —20]. For an alternative method, see Sect. 12.4.

The stationary joint probability distribution W,, compare (2.75), now takes
the form

Wy (b, i+ 70", 1) = Wa(F, 0, t+ T, 7', 0, )

_ voolP) wool) go

e 2aF Y WPy (F) e P exp(=A,,|T) . (12.62)
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With the help of this stationary joint probability distribution we are able to
obtain stationary two-time correlation functions.

Correlation Functions

The two most important Eorrelatiog functions for the light field [12.54, 55] are
that of the amplitude (d*5 = d (Re{b})d (Im{b})

9(a,7) = (b*(F+ D) B(D) = [|b*b Wy(b, i+ 7,5, 1)d*bd’h’ (12.63)
and that of the intensity fluctuations
K(a,7) = (|BE+ D= PN (B@ = <1BM))
= [§(B 2= (|BP) B PP~ <|BIPy) Wa(b, i+ T b', 1)d*bd?h’ . (12.64)

Inserting here (12.62) and carrying out the integration leads to (in normalized
units)

g(a,|7)) = 9(a,0) EOV,(,“’) exp(— A1p|T))

(12.65)
- 2
Ve = [ (S)fllloo(f) u/m(F)dF} /9(a,0)
K(a,|7)) = K(@,0) T V¥ exp(—204|7)
n=1
(12.66)
2
v = [ g 2 woo(7) U/On(f)df} /K(a,0).
The correlation functions for 7= 0 were calculated in Sect. 12.2:
g9(a,0) = (|b|*) = Ky(a) = <D
R (12.67)
K(a,0) = (|b*=(|b[*»)*) = Ka(a) .
Since all matrix elements V,, are positive and their sum is one
Y ny) =y Vr(;K) =1, (12.68)
n=0 n=1

V, give the relative influence of the nth order damping term. The Fourier trans-
form of the correlation function gives the spectral profile. Because the correla-
tion functions are sums of exponential functions, the spectral profile is a sum of
Lorentzian functions.
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Fig. 12.6. The first five eigenvalues A, as a function of the pump parameter « and as a function of
the power output P/FPy,, respectively (solid line). The following asymptotic expansions for large
positive and negative pump parameters, which can be obtained by a perturbation of the linearized
equations, are also shown (dashed line):

as» 1. Aypy=Va, A,=@n+Ya—-n@Bn+d/a, nzt,

a<—-1: A, =Qn+)|a|+4GBr*+4n+1)/a|, nz0.

Amplitude Correlation Functions

The first five eigenvalues A4,, determined in [12.53] by numerical integration of

(12.56), are plotted in Fig. 12.6. Calculation of V{? shows that 1 — V{9 = ¥ V&
n=1

is of the order of 2% near threshold and smaller outside. Therefore, the spectral

profile is nearly a Lorentzian with a linewidth (in unnormalized units)

4y = l/ﬂ;q/ho =arq/y, oap=Aoddy. (12.69)

The linewidth factor a;, obtained in [12.17b, 20, 5.15], is plotted in Fig. 12.7.
The factor ¢, varies continuously from 2 to 1 by passing through the threshold

“7%

15 7

o3 Fig. 12.7. The linewidth factor
0 1 1 ] 1 1 ] 1 1 1 o, = Ap¢I) as a function of the
0 -8 -6 4 -2 0 2 4 6 8410 pump parameter g
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Fig. 12.8. The values 1,V

0.2 X g(a,0)/2 (solid line) for n =0,
1,2,3 and the sum terms Y Ay,
2.8+ n=0
: X Vn(g) g(a,0)/2 (dashed line) for
361 i=1,2,3 as a function of the
’ pump parameter « and as a func-
04 tion of the power output P/P,,
respectively
0.2+
0 I

-0 -8 6 -4 -2 0 2 4 6 8 10

region. The ratio of 2 to 1 occurs because above threshold the laser amplitude is
stabilized and therefore only half of the noise power (in ¢ direction) contributes
to the linewidth. This linewidth factor was found experimentally by Gerhardt
et al. [12.56]. For small T the slope of the correlation function (12.65) is,
however, no longer given by the first term of the series at and above threshold.
The slope at 7= 0 reads [12.53]

~0@D| =90 I Va2, (12.70)
dT F==0 n=0

The last relation can be derived with the help of sum rules as explained in Sect.
7.2 (7.34). The first four terms of the series (12.70) are shown in Fig. 12.8.
Evidently, at least two terms must be taken into account, since above threshold
Ay1 is much larger (Ay; ~2a for a > 1) than A,y (19 ~ 1/a for a> 1) and V§? 4,
becomes equal V{? A for a > 1. Thus the linewidth factor ¢; can be determined
by the slope of (12.65) only if the time 7 is large compared to 1/1,4, so that only
the first term of the series will survive.

Intensity Correlation Functions

The first four nonzero eigenvalues A, and the matrix elements VX obtained by a
numerical integration of the Schrédinger equation (12.56) in [12.18] are shown in
Figs. 12.9, 10. The potential (12.57), the first four eigenfunctions i, and their
eigenvalues above threshold are plotted in Fig. 12.11. As seen, the eigenvalues
are nearly pairwise degenerate above threshold. Though the matrix elements V(X
and V45 become nearly equal above threshold, only one decay constant of the
series (12.66) prevails because of this degeneracy. In the whole threshold region
we may approximate (12.66) by the single exponential function

Kest(a, 7) = Ky (a) exp(— Aere|T]) = , (12.71)

which has the same area and the same value at 7= 0 as the exact expression.
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Fig. 12.9. The first four nonzero
eigenvalues Ay, and the effective
cigenvalue A (12.71) as func-
tions of the pump parameter a.
Far below (¢ < —1) and high
above (a » 1) threshold the effec-
tive eigenvalue can be approxi-
mated by =2 |a|
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Fig. 12.11. The potential ¥}, of the Schrodinger equation (12.56) and the first five
eigenvalues and eigenfunctions for the pump parameter a = 10
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The effective width A is 25% larger than the lowest decay constant for
a =~ 4.5. This deviation of A.¢ from Ay was found experimentally with measure-
ments by Arecchi et al. [12.42b]. Chopra and Mandel [12.46] were able to obtain
the lowest two matrix elements experimentally. (A table of eigenvalues, matrix
elements and A is contained in [12.8].) For unnormalized units the linewidth of
the spectrum of the intensity fluctuation is given by

Avi(@) =)/ Bqres(a) .

Below threshold (a <€ —1) the correlation function of the intensity fluctua-
tions is the square of the correlation function of the amplitude, viz.,

K(@,7=|g@D|. (12.72)

This can be shown by using the asymptotic values of the eigenvalues and of K
and K. It was proved by Mandel and Wolf [12.55] that (12.72) is valid provided
the light field amplitude b is a Gaussian process. [It follows from the linearized
Langevin equation (12.31) that the light field b is a Gaussian process far below
threshold.]

Detuning

If the resonance frequency w, of the laser cavity and the atomic frequency w, are
not exactly tuned, the normalized Langevin equation (12.6a) takes the form

db/di-(1+id)a—|b|>)b=T, (12.73)

0 6 OI.Q
2.4
2.2
2.0 Fig. 12.12. For various detun-
ing parameters J the line-
1.8 width factor (12.75) is shown
as a function of the pump
1.6 parameter  and as a function
of the normalized power
1.4+ output P/Py,, respectively
(solid line). The approxima-
1.2+ tion af (¢,6) = ap(a,0) +
[2—a, (a,0)] 6% is shown as a
1.0 | dashed line, a perturbation
10 -8 expansion up to &% [12.53] as

a dotted line
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Fig. 12.13. Explanation of the enhancement of the linewidth factor due to detuning

where J = (w.— w,)/y, is the detuning parameter [12.53]. The Schrodinger
equation (12.56) then reads

Ay, /dF% (A, — V,(A) +iv(FP—a) Sl w,n =0, (12.74)

where the potential V,(7) is still given by (12.57). The eigenvalue A, which enters
into the correlation function (12.63) now becomes complex. (The eigenfunction
will, of course, become complex, too.) The real part of 1, determines the line-
width. We may now define a linewidth factor aj by

ap = Re{lu)} . (f) . (1275)

The dependence on the detuning parameter, obtained in [12.53], is shown in Fig.
12.12. The linewidth factor increases with increasing detuning. This enhance-
ment of the linewidth due to detuning may be explained qualitatively in the
following way (Fig. 12.13): without detuning, the ratio of 2 to 1 occurs because
above threshold the laser amplitude is stabilized and therefore only half of the
noise power (only that in ¢ direction) contributes to the linewidth. Including
detuning, the small fluctuations in 7 direction around 7, lead to a (F—rg)-
dependent additional motion of the phase ¢, thus leading to additional phase dif-
fusion above threshold. Below threshold, no such additional diffusion occurs.

12.4 Expansion into a Complete Set; Solution by Matrix
Continued Fractions

To solve the laser Fokker-Planck equation (12.40), we may expand the distribu-
tion function W({, ¢, t) into two complete sets, Sect. 6.6.5. Because we are look-
ing for periodic functions in ¢ we use (2 7) "2 exp (ivp) withv=0, +1, +2,...



12.4 Expansion into a Complete Set; Solution by Matrix Continued Fractions 395

as one set. For the expansion with respect to the 1nten51ty we use generalized
Laguerre functions as the other set. The expansion of W is written as

WEeh=2n) e Y ¥ cP@OxMLPDw)er?, (12.76)
n=0 v=—-

where x is proportional to the intensity
I=ax. (12.77

The arbitrary scaling factor « is useful for a better adjustment of W to the
Laguerre functions expansion. (By varying a one can change the speed of con-
vergence.) We now insert the ansatz (12.76) into the Fokker-Planck equation
(12.40), multiply the resulting equation by (27) ™ "/2x "’ V2LV D (x) exp(—i v’ 0)
and integrate the expression over x and ¢. By using the relations [9.26]

x(d/dx)LY = nLY — (n+ LY |
x(d/dx)’LY + (v+1-x)(d/dx) LY+ nLP = 0, (12.78)
(n+ DL +(x—2n—v—DLYP+(m+v)LY, =0,

§x?e LY@ LY (x)dx = 5,,,(n+ v)! /n! (12.79)
0

for the generalized Laguerre polynomials, which are defined by
LY(x) = x Ye*(d/dx)"x" e */n! , (12.80)

one then obtains the following four-term recursion relation for the expansion
coefficients [12.30] (¢ = 0 for n < 0):

¢ =Q2n+v)(n+v+1act,
+[2n+vya-2nGBn+3v+a—v(v+ 1) alc
+nl(6n+3v-2)a—2a—4/alc?,

+2n(1=n)acl?,. (12.81)

This infinite system of ordinary differential equations is equivalent to the
Fokker-Planck equation (12.40). Notice that in system (12.81) coefficients with
different upper indices are not coupled. The initial conditions for the expansion
coefficients c,(,v) are determined by the initial conditions of W. For example, the
transition probability P, i.e., the Green’s function of the Fokker-Planck
equation, takes the form

Po. (i1 9,0)=2m) e * Y ¥ O, HxM2LID (k)09
n=0v=-o (12 82)
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where the coefficients ¢{”(x’, f) have to satisfy (12.81) with the initial condition
W', 0) = a [t/ (n+v) 1 x' VLD () (12.83)

The infinite system (12.81) can be solved by numerical integration of the
truncated system (12.81), Sect. 12.5.2. Because (12.81) is of the form (9.13), we
may apply the methods of Chap. 9. The infinite system can be cast into the tri-
diagonal vector recurrence relation (9.10), where the matrix elements of the 2x2
matrices @, @, are given by [9.18]:

+Hi_ g+2_ o+2 _

L2t (12.84)
= @n+2+v)2n+2+v)a,

1 = @n+v)a—4nn+3v+a—v(v+1)

2 —@n+v(Q2n+l1+v)a

( )¢ ) (12.85)

2 = 2n+1)(12n+4+3V)a—@n+2)a—8n+4)/a

2 _ (4n+2+v)a—(@dn+2)(6n+4+3v)a-v(v+a,
0. "'=4n(1-2n)a

“12_2n(12n+3v-2)a—4na—8n/a
or ( ) (12.86)

Q—21= 0
0, 2= —4n@n+1a.

As discussed in Sect. 9.3, the stationary solution, the initial value problem as well
as the eigenvalue problem can be obtained in terms of matrix continued frac-
tions. Because here only 2 X2 matrices occur, it is one of the simplest
applications of the matrix continued-fraction method.

12.4.1 Determination of Eigenvalues

As an application we now discuss the determination of the eigenvalues. The
determinant (9.119) for m = 0 is plotted in Fig. 12.14 for the case v= 0 as a func-
tion of A. The matrix elements of the matrices @, and Q, which enter in this
determinant and in the continued fraction K, (9.112) are now given by
(12.84 — 86). The zeros of this determinant are the eigenvalues Aoo, 1015 Ao2s - - - -
To determine these eigenvalues, the scaling parameter may be chosen in the range
0.1,...,10, where the number of continued-fraction terms is then in the range
30,..., 1000 [9.18]. For some a the determinant Dy(A) has poles. These poles can
be shifted by changing the scaling factor a. The eigenvalues determined in this
way agree very well with the eigenvalues obtained by numerical integration of the
Schrédinger equation (12.56). (Some of the eigenvalues A,, obtained by the
matrix continued fraction method are plotted in Fig. 12.15.) By comparing both
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methods, one may say that the matrix continued-fraction method is much
simpler to put into program statements and it usually works faster than the
numerical integration. Furthermore, the boundary conditions at /=0 and at
I = o are automatically fulfilled by (12.76), whereas for the numerical integra-
tion method they have to be taken into account by a Taylor series expansion
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(for small 7) and by a truncation procedure (putting y = 0 for some large 7). The
efficiency of the method is quite remarkable, because the expansion (12.76) is,
especially well above threshold, in no way adapted to the eigenfunctions of the
problem.

12.5 Transient Solution

If the pumping field of the laser is suddenly switched on, the laser amplitude bis
initially zero. Neglecting noise, this solution b = 0 is still a stationary solution of
the laser equation (12.4), but it is unstable above threshold (@ >0). By the spon-
taneous emission noise, the amplitude will be pushed away from its unstable
value b = 0 and it then finally reaches its stable value |b | = |/a. This switching on
process of the laser was treated in a number of papers [12.19, 21-25, 27,
30 — 33]. The theoretical predictions have been fully substantiated experimentally
[12.22, 45]. (For other theoretical work on the decay of this and other unstable
equilibrium states see [12.57 — 59] and references therein.) Here we present three
methods by which this transient behavior of the laser amplitude can be handled.

12.5.1 Eigenfunction Method

The general expression for the transition probability density in terms of eigen-
functions and eigenvalues was already given in (12.55). To describe the switching
on of the laser, we need only this expression for 7' —» 0. For 7' — 0 the terms with
v £ 0 drop out in (12.55) (for small 7, y,, is proportional to Flvl 2y je., the
transient solution cannot depend on the phase ¢. The special transition prob-
ability density then takes the form

W 0,0 = @nF) ™ yoo(P) T AnWon(?) exp(—Aonl) (12.87)
n=
where the coefficients A4, are given by

Ap= l_irr(l) Won(F)/ Woo(r) = l_ir% Won(F)/|/2FN . (12.88)
r— r—

It can be shown that y,(7) is proportional to [ﬁfor small 7. Therefore the con-
stants (12.88) have a well-defined value. For numerical calculations, the series
(12.87) must be truncated. Because of this truncation the expansion (12.87)
cannot be applied to very small times 7. For small times, however, the non-
linearity in the drift coefficient of the Fokker-Planck equation (12.38) can be
neglected and the distribution function can thus be approximated by the
Gaussian function

W(F,0,0) = a r'2> . (12.89)

a
2m(e**-1) < 2™ 1)
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The transient distribution
wl, ) = — J" “w(/T,0.0do, (12.90)

which was obtained in [12.19] by taking into account 10 terms of expansion
(12.87), is shown in Fig. 12.16. The transient mean 1nten51ty (1)) or first
cumulant K;(f) and the transient variance H(£)— <I(£))]?) or second cumulant
K,(#) can be obtained from (12.90); the results, also obtained in [12.19], are
shown in Figs. 12.17, 18. For small times one may derive the Taylor series
expansion from the normalized equations (12.43) or from (12.89)

() =4i+4at*+... (12.91)
@) = (D)) =32(2+64al’+... . (12.92)

These expansions were used in Figs. 12.17, 18 for small £. In normalized units, all
curves of the transient mean intensity start with the same finite slope. To find the
physical significance of this effect, we rewrite the expression in unnormalized
quantities, obtaining

(I(t)) = ANt + B(N;— Ny)oNyt*— B(N;— Np ) No 2+ ... ., (12.93)
where A, B, (N,— Nj)y, and (N, — Ny), are given by

A=2¢"y,, B=2g%(p)?, (N2=NDwr = Nowe = x9,/9%,
(Ny—Ni)o= Nay. (12.94)
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Fig. 12.17. The transient mean intensity of the distribution function (12.90) as a function of time for
various pump parameters a. The unnormalized intensity (/) (in photon numbers) and ¢ (in milli-
seconds) are valid for a threshold photon number 4000 and for a threshold linewidth of the intensity
fluctuation 1400 c/s from [12.42c]. The three indicated regions are: I — spontaneous emission; II —
spontaneous quanta are amplified by induced emission; III — saturation region. The solution
I(7) = al(0) exp(2ai)/[a—I(0)+1(0) exp(2af)] of the normalized equation (12.4) (B=1, d=a,
= b*b) without noise is dotted in for @ = 8. The initial value /(0) was chosen so that the solutions
with and without noise agreed at the end of Region II

We see that the term linear in ¢ stems from the spontaneous emission rate. The
second term in (12.93) stems from the spontaneous emission, which is amplified
by induced emission. The third in (12.93) term describes the losses of the spon-
taneous quanta due to their finite lifetime in the cavity. Above threshold, the sum
of both terms, which is quadratic in time, is positive. Higher expansion terms of
(12.93) stem from induced emission and from the change of inversion. Thus, we
can distinguish three main regions: spontaneous emission (Region I); amplifica-
tion of spontaneous emission by induced emission (Region II); saturation effects
of the inversion (Region III), Fig. 12.17. As shown in Fig. 12.18, the variance
reaches a maximum at the beginning of the saturation region (III) above thresh-
old. This means, of course, that for this time, the spread of the distribution func-
tion is largest. For larger times the variance becomes smaller and finally reaches
its stationary value. This can be physically interpreted as follows. Since in the
switching on process the spontaneous photons are amplified greatly, small fluc-
tuations of the spontaneous photons lead to large fluctuations at the beginning of
the saturated Region I1I. Because of the large stabilization of the nonlinearity,
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Fig. 12.18. The transient variance of distribution (12.90) as a function of time for various pump
parameters. The unnormalized intensity is valid for the same threshold values as in Fig. 12.17

these fluctuations are then diminished and thus finally reach their relatively low
values. At threshold (¢ = 0) no amplification occurs. Due to the low stabilization
effect of the nonlinearity for @ =0, the variance reaches its largest value for
t - oo, No maximum occurs for finite ¢ and @ < 0. These transient calculations
have been substantiated experimentally [12.22, 45].

12.5.2 Expansion into a Complete Set

The transition probability density was expanded into two complete sets, see
(12.82, 83). Because the Laguerre polynomials vanish at x =0 for v 0, the
initial conditions (12.83) for the expansion coefficients c{”, which describe the
switching on of the laser, now specialize to

c0,0)=90,,/a. (12.95)

Thus, only the terms with v = 0 enter in the transition probability density (12.82)
for I' = 0. According to (2.26) the cumulants of the expansion can be expressed
by the moments ¢/”y. (The first moment is the first cumulant, the variance the
second cumulant.) The moments can be expressed in terms of the expansion coef-
ficients c¢{”. Using [Ref. 11.50, Table 22.10] and (12.79) one easily obtains

B = el -l .
(I* = e —4cP+2c0) (12:99



402 12. Statistical Properties of Laser Light

(I = a*6cP-18c¢{?+18cP—6c)

_ (12.96)

Ty = a°4cP—96c0 + 1440 - 96V +24c§) .

Thus, the moments (/"(#)) and the cumulants can be obtained from the infinite
set of differential equations (12.81) for v=0. To solve the infinite system
numerically, one has to truncate it. Putting ¢” = 0 for n >N, we obtain a finite
system of differential equations, which was solved numerically in [12.30]. The
truncation index N was determined in such a way that a further increase of N did
not change the final result of Ky, K5, K3, K, beyond a given accuracy.

It turned out that the scaling factor ¢ had a crucial influence on the
truncation number N. To find the most suitable ¢ the following observations
were made in [12.30]. Generally, the absolute amount of the coefficients c(? first
increases with # and, after reaching a maximum, decreases. For large « the
coefficients have a low or no maximum, but a slowly decreasing tail, whereas for
small ¢ the coefficients reach a high maximum, but then drop rapidly. Therefore,
a large number of coefficients which only a few numbers of decimal digits has to
be used for large ¢, whereas for small ¢ less coefficients are necessary, but the
number of digits has to be adjusted to the height of the maximum. The results of
the numerical calculation obtained in [12.30] are shown in Fig. 12.19. In this
figure the same normalization for the first two cumulants as in {12.23] was used.
For large times the cumulants agree with the stationary cumulants in Fig. 12.5.
Whereas for small pump parameters only a few equations need to be taken into
account (typical values are N = 10 for ¢ = 5 and o = 0.1), the number N must be
large for large pump parameters (typical values are N =220 for a =20 and
o= 0.7). Thus, the method ceases to be tractable for @ appreciably larger than
20, but it is very accurate for a < 20. Notice that the only approximation made is
the truncation of the expansion (12.76). By increasing N this approximation can
easily be controlled.

Transient of the Amplitude

With the help of the coupled equations (12.81) for v = 1 it is easy to calculate the
average amplitude. Here we assume that the amplitude starts with an initial sharp

value by = ]/Ijo = |/ ax, with zero phase @, = 0. The average amplitude at a later
time is then given by

(Jaxe'?)

27 oo o o
% { {VxeP(, 0,111,,0,0)dpdx
(V]

(b))

= a2 (xg, 1) . (12.97)

In [12.30] the truncated system (12.81) was solved for v=1 with the initial
condition, compare (12.83),

cP(x0,0) = (bo/) ) LP(BE/ ) [a(n+ D] T, (12.98)
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0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
f—
Fig. 12.20. The transient of the amplitude (b} as a function of the time ¢ for pump parameter @ = 5.
The curves are shown for zero initial phase and different initial intensities 5(0)* = I = 0.02, ..., 3.
Curves —-—-— are the approximations (12.5) for small times without noise, curves -----—-- are the
approximations (12.99) for large times

for various amplitudes b,, Fig. 12.20. Whereas the solution (12.5) without noise
is a good approximation for small times, the exponential decay

(b)) = (b(fo)) exp [~ Aso(t — )] (12.99)

is a good approximation for large times. Here Ay is the first eigenvalue of system
(12.81) for y=1 (Fig. 12.6) and tO is a proper time at which both (12.97, 99)
coincide. The tdependence of (b(?)) is easily understood. As already discussed,
the motion of b(f) can be interpreted as the overdamped Brownian motion of
particles in the potential (12.25), Fig. 12.2. Starting at the initial value b, the
particles first move down to the minimum of the potential at |5| = |/a. Then
phase diffusion becomes important and the amplitude decays exponentially, For
small initial values, however, the probability of the particle to diffuse over the
top of the potential at |b|= 0 is larger, therefore, the averaged amplitude (b (¢))
has a lower maximum for smaller by,

12.5.3 Solution for Large Pump Parameters

The eigenfunction method of Sect. 12.5.1 works very well for pump parameters
up to @ = 8 and the expansion method of Sect. 12.5.2 for pump parameters up to
a =20. We now discuss a method which works well for very large pump para-
meters (a = 20). It was first developed by Gordon and Aslaksen [12.21] and
further improved in [12.23 —25, 27, 28, 32]. The main idea is the following. For
large pump parameters the (spontaneous) noise is important only for small times,
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where it pushes the amplitude away from its unstable equilibrium state b = 0.
Hence, saturation effects do not play any essential role for small times and we
may thus use the linear but unstable laser equation, compare (12.31),

bi—ab;=T; (12.100)

for times f less than ¢, Equation (12.100) corresponds to a Fokker-Planck
equation without nonlinearity in the drift term. It leads to solution (12.89) or for
the function (12.90) to

wd,f) = ——a——exp<———a_——l_>, (f<ty) (12.101)

1
2 e2ai_

for the initial condition w(Z,0) = limd(/—¢). At time { = t, the distribution
is thus given by -0

wollp) = wllo, to) = 19 ep(-—2 ). (12.101a)
2 e2at0__ 1 2(e2at0_ 1)

For larger times ¢ > f, we may neglect the noise. The noiseless solution (12.5),
which reads for the intensity in normalized units

I = [ye? =0 /[1 + (2~ - 1) [/a] , (12.102)

takes into account the full nonlinearity. For different I, (12.102) are the trajec-
tori_es_ or paths, which connect the distribution at ¢ = #, with the distribution
w(l, t) at a later time according to

w(l, i) = {6 - I(t) wolo)d o
= wo(Iy)dly/dl . (12.103)

Here, I, has to be replaced by I, i.e., one has to use the inverse relation of
(12.102)

fy=Te 28 0/[1 4+ (e"2T- 0 1) [/a] . (12.102a)

Performing the differentiation we finally obtain for ¢ = 7,

ge~ 2001

2(e2el—1)[1+ (e~ 290~ 1) I/a]’

xexp| — ae 20T (12.104)
2e2h- )1+ 2O -1)/a] ) '

w(l, 1) =
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The moments of the distribution w(J, t_)

"Dy = {Mwd,ndl (12.105)

Ot §

take the form for ¢ > ¢,

o ® I_OeZa(t-—tB) n o
d"@)y=§ — — wo(lo)dIy .
0\ 1+(e29-)—1)]y/a

Here we have substituted the variable I by the variable 1. Further substituting
x= aly/2[exp(2aty)—1]}, we finally arrive at the following result for the
moments:

t- to:

IIA

D> = [2(e* —1)/al"n! , (12.106 )

t— to:

v

D)y = a" [{1—e 290 4 g2e 29 /[2x(1 — e "2%)]} e *dx. (12.106b)
0

The matching time #, has to be chosen so that the following two conditions are
fulfilled. First, f, should be so large that the intensity 47, due to the noise is small
compared to the intensity 2[exp(2af,)— 1]/a at that time, compare (12.106a).
Second it should be so small that saturation plays no essential role. This is the
case if the intensity is small compared to its final value a. This means one should
require

47y <2(e*™—1)/a<a. (12.107)

By equating the term in the middle with the geometric mean between the lower
and the upper bound we obtain approximately for large a

aty=iIna+ +Inafy=4lna. (12.108)

The first four cumulants obtained from (12.106) are shown in Fig. 12.21 for the
choice afy= | Ina and afy= | Ina as a function of af. As seen, the difference
between the two solutions for the above choices of at, gets smaller for increasing
a. For a = 20 the first four cumulants agree fairly well with those obtained in
Sect. 12.5.2, whereas for a = 10 we have, especially for K,, K5 and K, only a
more qualitative agreement.

In the procedure described above, the noise is completely neglected for ¢ > ¢,
Therefore the distribution function (12.104) leads to the sharp distribution
0 —a) in the limit 7— o and consequently the second cumulant vanishes for
large ¢, in contradiction to the stationary distribution (12.45) and to the
stationary value K, = 2 (Fig. 12.5). To remedy this drawback one may switch on
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the noise again at a time #; > f,. This time must be so large that an appreciable
amount of the intensity is in a region where the linearized equation (12.33a) is
valid. Because the process is then again an Ornstein-Uhlenbeck process, the dis-
tribution for > f; may be obtained by a convolution of the distribution w(Z, #,)
with the transition probability density (5.28) of the Ornstein-Uhlenbeck process
[12.23, 24]. This distribution then has a finite width for ¢ —» c and consequently
the second cumulant is equal to 2 for 7— o. The method described above
resembles the path integral method [12.59].

12.6 Photoelectron Counting Distribution

The distribution function of the light field inside the laser cavity is not measured
directly. Usually, one measures the intensity outside the laser cavity with a
photon detector. Because only a small fraction of the light intensity is trans-
mitted by the mirror and finally is absorbed by the detector, one usually counts
only a few photoelectrons in a given time interval 7. The connection between the
continuous intensity distribution and the discrete photoelectron distribution was
first derived by Mandel [12.60, 61]. (A fully quantum-mechanical derivation has
been performed by Kelly and Kleiner [12.62]; see also [12.1, 3, 5].) Mandel’s
main result is that the probability p(n, T) of finding n photoelectrons in the time
interval ¢,t+ T is given by

p(n,T) = {(Q"/nYe %y = [(QY/n)e W(Q)dQ, (12.109)

where  is proportional to the time integral of the intensity

t+T

Q=q | I¢t)dt . (12.110)
t

The factor ¢ is determined by the mirror transmittance, a geometrical factor
giving the fraction of the intensity which falls on the photodetector, and the
quantum efficiency of the photocounter. Because the intensity is a stochastic
variable, Q is a stochastic variable, too. In the Mandel expression (12.109) one
has to average the Poisson distribution "¢~ */n! according to the distribution
of the time-integrated intensity (12.110). In the stationary state, W(£) and there-
fore also p(n, T) depend only on the length of the time interval 7, but not on the
time ¢ itself. If one is interested in the expectation values

(n'y= Y a'pn,T), r=0,1,2,..., (12.111)
n=0

the following relationship between the kth factorial moment {n*!y and the
moments of (%) is very useful:
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(n*ly = f nn-1)...(n—k+1)pn,T)
0

n=

= ¥ [/ (=) p(n, T) = <QF) . (12.112)
n=k

The last relation follows immediately by insertion of (12.109).

The distribution W(£) can be obtained by the method in Sect. 8.2.1. The dis-
tribution W(Q) for the laser Fokker-Planck equation (12.38) has been evaluated
in this way by Lax and Zwanziger [12.63] for arbitrary time intervals 7. Here we
shall determine the full photoelectron counting distribution only for small time
intervals 7. The first moment of the variance of the counting distribution will be
calculated, however, for arbitrary time intervals 7.

12.6.1 Counting Distribution for Short Intervals

Here we assume that the time interval 7T is short compared to the time in which
the intensity changes its value appreciably

TV/Bg=T<1/A. (12.113)

Because the intensity does not change in the interval 7, one may write

t+T

Q=a | I(')dt' = aTI(t) = aT)/ q/BI(1)
t
=(aT/B) (1) = vI(2) (12.114)

and average according to the stationary distribution (12.45). We thus obtain

© nn _ B _
p(n,T)=N| oD exp<— vi- %I%L%al) dr

o n!
_ V" Fya-2v) (12.115)
n! Fy(a)
The parameter
v=aT)/q/B (12.116)

relates the mean photon number with the mean intensity, see the first equation of
(12.119), and F, are the integrals (12.48). Typical counting distributions are
shown in Fig. 12.22. For large average photon numbers (large v), the photoelec-
tron counting distribution is nearly identical to the continuous intensity distribu-
tion (Fig. 12.22c¢)



410 12. Statistical Properties of Laser Light
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p(n,T) = peoni(n, T) = vF(l,(a) exp Ii— %(n/v)2+ %a(n/v)} . (12.117)

The relations between the first four cumulants of the photocounting distribution

ki(a) = <i> ln[ T e"p(n, T)}
ds n=0

and the first four cumulants (12.54) of the stationary distribution (12.45) are
given by [12.60, 61]

(12.118)

§=0
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I T I Fig. 12.23. Counting distribution

0.25 | just above threshold (solid line),
e the Poisson distribution for the
----- same n (dotted lines), and the
0.2+ ____ I =1 nonlinear oscillator distribution
....... ===z (12.115) giving the best fit (dash-
Poisson ed line). For n=7, 8 and 9 the
n /— _! nonlinear oscillator and observed
015 T observed distributions are  coincident.
(Redrawn after [12.40])
nonlinear
o1t F~ oscillator -
0.051 n
0 1 ] I ] 1 I 1 | ZEPRR rxr

ki(a) = {n) = vK,(a)

ky(a) = {(n—(n))*) = vKy(a@) + v*Ky(a)
(12.119)
k3(a) = vK (@) + 3V K (a) + v’ K5 (a)

kia) = vK(@)+Tv*Ky(a) + 6 v K3(a) + v K (a) .

The cumulants K,(a) of the stationary intensity distribution are plotted in
Fig. 12.5.

The photoelectron counting distribution p(n, T) for short intervals and near
threshold was first measured by Smith and Armstrong [12.40]. The excellent
agreement between theory and measurements is shown in Fig. 12.23. One sees by
inspection that the measured distribution is not a Bose-Einstein distribution

1 ny Y
T) = 12.120
Po(m: T) 1+4n) <1+(n)> ¢ )

(a Bose-Einstein distribution has its largest probability always for n = 0), but that
a Poisson distribution (n)" exp(— {(n))/n! is a better approximation. The Bose-
Einstein distribution is valid for pump parameters far below threshold (@ < —1).
This can be shown by using an asymptotic expansion of the integrals F,(a) for
a < — 1. (One can then neglect 7%/4 in the exponential function.)

The transition from a Bose-Einstein to a Poisson distribution through the
threshold region obtained by changing the pump parameter is best seen by
looking at the variance

((n—<ny)?y = () +n(a)(n)?, (12.121)



412 12. Statistical Properties of Laser Light

10 T Fig. 12.24. The parameter
n(a) of (12.122) (solid line),
and the asymptotic expan-
sions n=1-4/a% fora < —1
and n=2/a® for a1 (bro-

08

® experimental

06 ken line) as a function of the
pump parameter a. The ex-
041 perimental points are taken
from [12.42a]. (The abscissa
021 K,(a)/K (0) from [12.42a]

was rescaled and expressed as
a function of @)

\
0 1
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where we introduced the parameter n{a@) defined by
n(a) = K»(a)/Ki(a) . (12.122)

As seen in Fig. 12.24 there is a smooth transition from the variance of the Bose-
Einstein distribution # = 1 to the variance of the Poisson distribution # = 0. The
variance (12.121) consists of two parts; the first part {(n) stems from the discre-
teness of the photoelectrons, whereas the second part n(a)(n) stems from the
fluctuation of the light beam. It should be noted that the last part n(@){n)*
remains finite as the pump parameter @ goes to infinity because (n) increases
proportionally to a. However, if the light beam is attenuated so that (n) remains
constant as « is increased, we finally obtain for ¢ — o a pure Poisson distribution
with variance {(n).

12.6.2 Expectation Values for Arbitrary Intervals

We now drop the assumption (12.113) that the time interval T is short compared
to the correlation time (8q) ™ ?(Ae) . In contrast to Sect. 12.6.1 we do not
derive the counting distribution but merely discuss the expectation value <z and
the variance {(n— (nY)?y. Using (12.110, 112, 113, 116) we obtain

_ T _
(ny=(Qy=ahy=(/T) | U('))dt' = vK1(a), (12.123)
¢

{(n—<ny?y = (n)y+ (n(n—1))—<n)?
= (n)+ (%) — (*

= (n)y+(v/T) 5_ 5_ [Ty y = ()Y ("))l de'de”
f f

The bracket under the double integral is the correlation function of the intensity
(12.64) in normalized units. Inserting expansion (12.66), we thus obtain
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{(n—(nY)?y = vKi(a) + v’ K@) f(T)

_ o K) _
fh= § 20 {1— i [1—eXp(—/10nT)]} (12.124)
onT

n=1 /IOnT

2 1 -
—4{1- =[1—exp(—4 ffﬂ]}-
/leffT{ /leffT )

In the last line we have used the approximation (12.71).

For AT <1 we have f(T)=1 and thus obtain the result in the second
equation of (12.119). For Aest T >1 we have S(T) = 2/(Aegs T). The part of the
variance v2K,(a) f(T) which stems from the fluctuation of the light beam is
therefore diminished by using a long time interval 7 > Agt. Because A has a
minimum near threshold, the part of the variance v?K,(a) f(T) is most important
in the threshold region.

u



Appendices

Al. Stochastic Differential Equations with Colored Gaussian Noise

Here [ want to show how the matrix continued-fraction method can be used to
calculate expectation values for certain stochastic differential equations with co-
lored Gaussian noise, i.€., the noise may have an arbitrary correlation time. This
method was developed by Zoller [A1.1], Dixit et al. [9.22] and Zoller et al. [9.23]
for treating the optical Bloch equations with multiplicative colored-noise terms.

The method is exemplified by the Kubo oscillator [A.1.2, 3, 3.1], whose
frequency changes according to

u=ilwe+e(®)]u, (Al1.1)

where ¢(f) is a Gaussian stochastic force with zero mean and an exponential
correlation function

)y =0, <(e(t)e(t')y=yDe "1l (A1.2)

Formal integration of (A1.1) with the sharp initial value u(0) leads to
t
u(t) = u(0) exp [i w0t+i§£(t’)dt’:| . (A1.3)
0

Using (3.75, 16) we obtain (¢ = 0)
u(t)y = u(0)) expliwot —D[t—(1—e ")/y]}. (A1.4)

For y— o the stochastic force £(¢) may be approximated by the J-correlated
Langevin force

e()= DIy, <(T@OIE)y=28(t~1"). (Al.22)

The result (A1.4) then reduces for wy=0 to (3.76) with a = ilﬁ). For y—0,
u(t)) = u()) exp(iwgt—yDt%/2), which could also be obtained by inte-
grating (A1.1) for a fixed ¢ and then averaging it with the help of the stationary
distribution W,(¢) = QnyD)~ V? exp[ - £%/(2yD)).
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The result (A1.4) can be obtained by the continued fraction method as
follows. Equation (A1.1, 2) are equivalent to the Langevin equation (A1.1) and

é=—ye+y)/DI(W), (IO =28(t—1), (I()>=0 (ALS)

because (A1.5) immediately leads to (A1.2) in the stationary state, Sect. 3.1. The
Fokker-Planck equation corresponding to (Al.1, 5) reads [W = W(u, &, )]

W =LpW, (A1.6)
9 .
LFP= _a—ul(w0+ 8)“+Le, (A17)
2
L =y—e+y'D—. (A1.8)

Here, L . has the same form as the operator L;;. in Chap. 10. By multiplying (A1.6)
by u and by integrating it with respect to ¥ we obtain after integrating by parts

w=i(we+e)w+L w, (A1.9)
where the marginal distribution w [3.1] is given by

w(e, t) = fuW(u,e,t)du. (A1.10)
By expanding this distribution into Hermite functions (&) [see (10.38 —40)

with v = g and v3, = yD]

Ww(e 1) = wole) foc,,(t) V&), (AL.11)

n=

we obtain, similarly as in Sect. 10.1.4, the tridiagonal recurrence relation (¢, = 0
forn=-1)

éy=({wo—ny)c,+i)/yD(/n+1c, 1+ nc,_q). (A1.12)
The averaged value of u, see (A1.4), is then given by
ut)y = {fuw(u,e,t)dude = fw(e, t)de = co(t) , (A1.13)

where c,(¢t) is a solution of the system (A1.12) with the initial condition
(stationary distribution for €)

€n(0) = 6,0 (A1.14)

We may thus immediately apply the results of Sect. 9.2.2. The Laplace transform
of cy(?) reads
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Ey(5) = Go o()u(0)) = [s—iwy— Ko(s)] ~(u(0)), (A1.15)
where K(s) is the infinite ordinary continued fraction (9.72) with m = 0, i.e.,

- 1yD |+ 2yD
|iw0—s—1y |iw0—s—2y

Ko(s |+ e (A1.16)

By using [Ref. 9.1, § 48, Eqs. (23, 26)], it may be shown that (A1.15, 16} are the
Laplace transform of (A1.4), see also (10.148 — 152). By setting s = i we have
thus found a continued fraction for the half-sided Fourier transform of the
solution of (A1.1, 2). This continued fraction is very convenient for numerical
calculations.

A more general stochastic equation has the form [A1.1, 9.23]

N . ..
;= Y [AY+BYet)u;, i=1,...,N, (A1.17)
j=1

Jj=

where &(¢) is still given by (Al1.2). By adding (A1.5) to (A1.17), we obtain
Langevin equations for the variables uy,...,uy, . The corresponding Fokker-
Planck equation is (A1.6), where Lgp is now given by

A'+BYe)yu;+L,. (A1.18)
J

By multiplying the Fokker-Planck equation with «; and integrating the resulting
equation over uq, ..., Uy, We obtain after performing a partial integration for the
marginal averages

wile, 1) = fu;W(uy,. .. . un, &1)d"u (A1.19)

the equations [3.1]
. N ii ir
w;= Z(AU+BZJE)WJ'+L€W,'. (A120)
j=1

Now we again expand the marginal averages in Hermite functions y,(¢€)
wile, 1) = o(e) L calt) wale) - (A1.21)
n=

Using the vector and matrix notation

1
Cp= [ : J , A=@A%, B=®BY (A1.22)
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and inserting (A1.21) into (A1.20) we thus obtain the tridiagonal vector
recurrence relation

¢,=(A—nylyc,+/yDB(/n+1c, 1+ nc, ). (A1.23)
The averaged value {u;(r)) is given by
(ug (1))
co(t) = : , (A1.24)
Cun(t)y

where ¢,(¢) is a solution of the system (A1.23) with the initial value

(u1(0)>
co(0) = : , ¢, (00=0 for nz1. (A1.25)
(un(0)>

As derived in Sect. 9.3.1, the Laplace transform of ¢y(¢) reads
&o(s) = G, 0(5)€o(0) = [sT— A — Ky(s)] ~"¢(0) , (A1.26)

where I;’O(s) is given by the infinite matrix continued fraction (9.112) (first
derived in [A1.1, 9.22, 23))
Ko(s) = yDB[(s+1y)]-A—2yDB[(s+2y)[-A
—3yDB[(s+3y)I-A—...17'B1"'B]'B. (A1.27)
By setting s =i we thus arrive at an expression for the half-sided Fourier
transform of {u (¢)), which is very convenient for numerical calculations.

1/y-Expansion
For large y we obtain the following 1/y expansion for Ky(s) and Ky(1):

2
vD p2, yDzBAB+———2(yD) B*
S+y (s+7) (s+y)Y(s+2y)
D 2(yD)?

Y 3BA2B+———(2y) -
s+7) S+p)s+2y)
2(yD)?
(s+7)(s+2)

3 3
ey iy o
(s+7) Y (+3y)  S+y)ys+2y) (A1.28)

Ko(s) =

B2AB?

-+

(BAB?+B3AB)
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Ko(t) = yDe ""B*+Dyte " ""BAB
+2D*(—e M4 ypte V+e B

+i{D%(yt)ze*7’BA23+2DZ(—2e-W+ yte V4 2e

Y
1
+yte”*)B’AB*+2D’ [e-y’— yre "+ - (y1)e

—e-“‘] (BAB*+B’AB)+D? [%e-y'—swe*”

+2(y0)Pe " —6e P 4 2yre M+ %e_”’] B“} +0(y™Y.
(A1.29)

It follows from (A1.26), compare (9.113), that ¢¢(f) obeys the integrodifferential
equation

olt) = Acy(t) + fKo(t —1)ep(r)dt (A1.30)
0

with the initial condition (A1.25). Because the kernel K (¢) falls off very rapidly
in time for large y we may use repeated partial integration similar to (10.183 a).
[The term A must now be added in (10.183).] After some lengthy calculations we
thus obtain the following differential equation:

So=Lo(t)co, (A1.31)
Lyt)=A+D(1—-e"")B?

+ iD(1 —e M"—yte""B[A,B]
14

1
+ —Z{D [1 —e V—yre V'~ %(yt)ze_”:| B[A,[A,B]]
14

+D? {1 +e M=2yte V- %(yt)ze‘y’—Ze‘27’~ yte‘”’}

xB[{B,A],B1B + %02[1 —2e M (yt)’e Y+ e 2

sz[[B,A],B]} +0 <i3> } (A1.32)
y

For yt > 1 (A1.32) reduces to
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Ly()=A+DB*+ 1 s [4,B]
Y

+LZDB[A,[A,B]]
¥

+ %Dz{s [[B,A1,B]1B + —%Bz[[B,A ],B]} +0 <—13—>
Y Y/ (A1.32a)

For commuting matrices [4,B] =0 we can evaluate the inverse Laplace trans-
form of the continued fraction [sT—A — Ky(s)] ~! exactly (similar to the proce-
dure at the end of Sect. 10.3.1) leading to the exact result

Lo(ty=A+D(—e ")B?. (A1.33)
For the Kubo oscillator (A1.1) we have 4 =iw,, B =i and thus obtain

u(0)y/9t =[icwg—D(1 — e~ ")) (u(t)) (A1.34)
in agreement with (A1.4).

Generalizations
Several generalizations of this method are possible.

(i) For the averages (u(t)u;(t)>, <ut)u;j(t)ui(t)),... the method is also
applicable, leading to equations of motion for the marginal distribution
functions wy;, Wiy, ..., which could also be solved by matrix continued-fraction
methods.

(ii) If & appears in some higher polynomial couplings of highest order M in
(A1.17), the same expansion (A1.21) then leads to a form where 2 M + 1 nearest
coefficients ¢, are coupled. As explained in Sect. 9.1, one can also cast this
equation into a tridiagonal vector recurrence relation by using suitable vector
notation.

(iii) If more stochastic forces &, &, €;... appear in (A1.17), one has to use an
expansion vector with more indices ¢, ,, ... - If € appear linearly in (A1.17),
one then generally gets a tridiagonal coupling in all the indices, which usually
cannot be reduced to a tridiagonal coupling in one index and therefore the con-
tinued-fraction method cannot be used. One may, of course, still solve the
coupled equations by a proper truncation.

It may, however, happen that for certain stochastic differential equations
coupling may be reduced to tridiagonal coupling. This was the case in the
problem treated in [Al, 9.22, 23], where a complex &(¢) appeared and the phase
of &(¢) dropped out in the final expectation value,

(iv) If the variable u appears nonlinearly in (A1.1), one may still solve the
problem by expanding W(u, €) into a complete set with respect to the u variable
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and into the set w,(€). By truncating the expansion in # one may then derive a
tridiagonal vector recurrence relation (A1.23).

(v) If g(¢) is a random telegraph noise, Wédkiewicz [A1.4] has shown that the
same method can still be used. The continued fractions will then, however,
terminate.

(vi) The method may be applied to the partial differential equation
Op(x,1)/0t =[A+Be(®)]p(x,t) (A1.35)

where A and B are operators with respect to x. (The extension to N variables

{x} = x4, ..., xxis also possible.) If a proper expansion of p(x) into a complete set

is used, (A1.35) transforms to (A1.17). In x-representation the 1/y expansion
(A1.32) is now also useful where A and B are the operators A and B of (A1.35).

A2. Boltzmann Equation with BGK and SW Collision Operators

The one-dimensional Boltzmann equation with a BGK collision operator [1.23]
or with the SW collision operator proposed by Skinner and Wolynes [A2.1] can
also be treated by the matrix continued-fraction method. The SW collision
operator is defined by

LowW(x,v,t) = ojo [K(v',v) W(x,v,t)—K(v,v') W(x,v,t)]dv’ , (A2.1)

where the kernel X reads

ye+1 m m 2
K@,v'") = exp{ —————[(yo— Do+ (y,+1Do'1°¢.
(v,v") =y 2y V| 2kt p{ Sk T [(ys— Do+ (ys+1) ]}

(A2.2)

If the parameter y, is equal to 1, (A2.1) reduces to the BGK operator (1.32). As
shown in [A2.1] the eigenfunctions of L gy,

Lswy,(v) = — Ayp,(v), (A2.3)

are the Hermite functions y,(v) defined in (10.39) and the eigenvalues A, are
givenby (n=1)

n
Ao=0, ,1,,=y{1—<1_7’5>] (A2.4)
14y,

For y,— 0 we obtain the eigenvalues (10.37) of L in Sect. 10.1.4 multiplied by
2ys
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yo—0:  A,=2ymny, n=0,1,2,..., (A2.5)

whereas for y,— 1 we obtain the eigenvalues of the BGK operator [A2.2]

0 n=0
—1: A, = f . (A2.6
Vs n {y or nz=1 )

Because the eigenvalues and the eigenfunctions are the same for both L; and
Lgw/(Q2y,) in the limit y,— 0, both operators must agree, i.c.,

lim
%=0 2y

Lo=Liw)=p> (o+ XL 3, (A2.7)
Ov m Ov

This may also be derived explicitly as follows. Setting y, = y1/2 we write

—p! ’ 2

! K(u',u)=1_+7ﬂ M exp| - [v—v' +yt(v+v')/2] >
25 t)/myr | KT kT 41

(A2.8)

In the limit y,— 0, i.e., in the limit 7— 0, we may neglect y 7 in the first nominator
on the right-hand side. Furthermore, in the limit 7 — 0 we can replace t(v +v') by
27v’ in the exponential. We thus obtain the transition probability (4.55) for
small 7 with D@ = ykT/m and D® = — v, i.e.,

K@',v) = iP(v,‘L'lv’,O) = ieLi'(”)’é(U— v')
2y, T T

= [i+Lir(u)+0(r)] S(v—v'). (A2.9)

T

Insertion of (A2.9) into (A2.1) leads to

ZLLSW W(x,v,t) = T_ij[W(x,v’, H—Wx,v,0)]6(w—v')dv’
s + {Lin(v) 8@ —1v") W(x,0', 1) dp’
—Ly(")d(v—v") W(x,v,t)dv’' + O(7) . (A2.10)

Obviously, the first integral vanishes. The last integral also vanishes because the
integration over the Fokker-Planck operator is zero. Therefore (A2.10) simplifies
in the limit y,— 0 to

1

LSW W(x,l],t) =Lir(U) W(x’ v, t) ’

Vs

which is equivalent to (A2.7).
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The Boltzmann equation (1.31) with the collision operator (A2.1) can be
expanded in the same way into Hermite functions as in Sect. 10.1.4 for the
Kramers equation. The only difference now is that in the coupled equations
(10.46, 46a) the diagonal damping terms #7y have to be replaced by the eigen-
values A, given by (A2.4). Therefore, — with slight modifications — also the
matrix continued-fraction method of Sect. 10.3 can be used for solving the
hierarchy (10.46). The eigenvalues of the full Boltzmann equation (1.31) with a
BGK collision operator were calculated in [9.16] for a cosine potential by this
method.

A3. Evaluation of a Matrix Continued Fraction for the Harmonic
Oscillator

In Sect. 10.3.1 we derived a general expression for the Green’s function of the
Kramers equation in terms of continued fractions (10.137 — 143). The Laplace
transform for this Green’s function in position only is given by

Go,o(8) = [ST-Ko()] 1, (A3.1)

where K, (s) is the infinite continued fraction

Kys)=D[(s+y)I-2D[(s+2y)I-3D
x{(s+3yI—...1 'D1"'D1"'D. (A3.2)

On the other hand, the Green’s function for a harmonic oscillator can be cal-
culated exactly. In the x representation it simply follows from

Go,o(x, X', 1) = [[P(x,0,1|x",v,0027) vy " exp[— L(v'/vg) 1 dodo’
(A3.3)

where P is the transition probability (10.55). By performing the integration and
using (10.56 — 63), one thus obtains after some lengthy calculations

G(),()(X,x,, t) =

Vm exp<— mw‘z’[x_x'ﬁ(’w). (A3.4)
1V 27kg TI1 —y2(1)] 2kg T —y*(1)]

Here, y(¢) is given by
y(O) = (e~ = de MY/ (A= 1), (A3.5)
where A4 and A, are defined by (10.60).

The exact result (A3.4) should therefore agree with the exact result (A3.1, 2)
for the harmonic oscillator taking ¢ = 0. To show the equivalence, we first have
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to evaluate the infinite matrix continued fraction (A3.2) for the harmonic
oscillator.

For a harmonic oscillator the commutator of D and D is proportional to the
unit matrix, see (10.28, 52)

[D,D] = wil . (A3.6)
Because of this relation we have the identity
DFDD)=FDD+ wiDD, (A3.7)

where F is an arbitrary function. If we truncate the infinite continued fraction
(A3.2), the last term only contains a DD. Because of (A3.7) we then conclude
that every denominator depends only on D D. By shifting D in (A3.2) to the right
we then have
Ko(s) = [(s+ ) I-2(DD + i) [(s+2 )1
—3DD+2w3D)[(s+3y)I—4DD+3 wdl)
X [(s+4nI-...1 71" 1" 17 'DD. (A3.8)
(The factors 1,2, 3,... in front of w§l appear, because for each shift of D to the
right a term w37 has to be added.) Because the operators in (A3.8) appear only in
the combination DD and because the product DD commutes with itself we can

now evaluate (A3.8) as an ordinary continued fraction. We therefore omit the
matrix character and write

DD = —wié> —wit. (A3.9)
We thus have

[Go,0(5)] ~ ' = 5= Ko(s)

N wa(c+1)—wa|+ 205(E+1)— 4 wp|
| s+y I S+2y

, avkrs0l]

(A3.10)
s+3y

This ordinary continued fraction fits the form of [Ref. 9.1, Vol. I, p. 288, Satz
6.5]. The result for Gy o(s) reads

Go,0(s) = (£Ap+5) T JF1 (= & 15(E A +5)/ (A= ) + 1 — A2/ (M= A2)
(A3.11)

where ,F; is the hypergeometric function [9.26] and A4, A, are defined in (10.60).
If we use [9.26]
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Fi(-&162) = (1-2)%F (=& e 1562/(z— 1)) (A3.12)

and the integral representation [9.26]

1
Fi(—Ee—1;ca)=(c—1) fu (1 — qu)*du, (A3.13)
0
we get
~ 1 A\
Go,o(s) = L) fu@hr/Gi=2=14 — 4 u/40)%du .
’ /11—/12 /11—/12 0

The substitution
u=e Giit
leads to

Gools) = Je I (014dr, (A3.14)
0

where y(¢) is defined by (A3.5).
Hence, the Green’s function Gy o(¢) is given by y(¢). In x representation it
thus takes the form

Go,ox,x',1) = ()] "PP/“86(x—x"), (A3.15)
where D and D are the operators (10.27) with & = 0. We may now expand the ¢
function in terms of eigenfunctions of DD, Sect. 5.5.1. The remaining sum can
then be evaluated by (5.65). Another method would be to obtain a solution of

Goo= ~ DO/ y(ONDD/w}) Gy, (A3.16)

which follows from (A3.15) by differentiation. It is easily checked that the
Fourier transform of G, o with respect to x, i.e.,

Goo(x,x',2) = Q2n)~! | ¥ Gk, t|x")dk, (A3.17)
is given by
G(k,t|x") = exp{—ikx'y(t) - [kg T/Qmwd) k*[1-y* )]}, (A3.18)

compare (5.27) [y(0) = 1]. Insertion of (A3.18) into (A3.17) leads to (A3.4),
which finally proves the equivalence of (A3.1, 2) with (A3.4) for the harmonic
oscillator.
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Ad4. Damped Quantum-Mechanical Harmonic Oscillator

To introduce damping in quantum mechanics, the system is coupled to a reser-
voir or heat bath. In the Schrodinger picture the equation of motion for the
density operator p of an harmonic oscillator is then given by

—iwg[b™ b, pl+x(ng+1){[b,pb 1+ [bp,b* 1} + xny{[b*, pbl + b7 p, b]}
~iwglb* b,pl+x{{bp, b1+ b, pb*1+2ny[1b, pl, 671} . (Ad.1)

p

Here b* and b are the creation and annihilation operators of the harmonic
oscillator obeying the Bose commutation relation

(b,b*]=bb*-b*b=1, (A4.2)

wp is the frequency and x the damping constant. The number of the thermal
quanta is denoted by

1

- -, 4.
hao/(kT) _ ¢ (A4.3)

R =

The damping constant x is assumed to be small compared to the frequency w.
The first term on the right-hand side does not appear in the interaction picture.
For a derivation of (A4.1) see [A4.1—3, 1.28, 12.1]. (In the Heisenberg picture
one derives a Langevin type equation for the creation and annihilation operators
b* (¢) and b(¢), where the Langevin forces are operators {A4.4, 12.1].)

One way of handling the operator equation (A4.1) is to reduce it to a system
of differential equations for the matrix elements

Prm=(n|p|m) . (A4.4)

Here, |n) is the eigenstate of the number operator b™ b, i.e.,

b*blny=nlny, |ny=(b""0y/})nt. (A4.5)
Because
btiny=)n+1|n+1), bln)=]/ﬁ|n—1), (A4.6)

it is easy to obtain the following equation for the above density matrix elements

.bn,m= _in(n—m)pn,m+2%(nth+1)l/n+1 m+1pn+1,m+1
—x[(1 +210) (0 + M) +200) o+ 250 )/ MY Py 1y (A4T)

The diagonal elements p, = p, , obey the master equation (Sect. 4.5)
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n+1 Pt
lz;((nth+1)(n+1) Tz;mth(n+1)
n Pn
Tz;mthn lZ;{(nth+ 1n
n-1 Pn—1

Fig. A4.1. Transition rates for the master equation (A4.8)

Pn=2x{nn+ N+ ) pp1— [+ Dn+ng(n+Dlp,+ngnp, 1. (A4.8)
The upward transition rate out of state # of the oscillator is the sum of

2xngun (= induced emission rate due to the reservoir)
and

2xnul (= spontaneous emission rate due to the reservoir) ,
whereas the down transition rate out of state » is given by
2x(ny,+1)n (= induced absorption rate due to the reservoir) ,

see Fig. A4.1. The stationary solution of (A4.8) is the Bose-Einstein distribution

1 n
pnzpn’nz Mip =(1__e—hw0/(kT))e—nhw0/(kT)' (A4'9)
1+ Ain 1+ i

Transformation to a Fokker-Planck Equation

We now want to show that the operator equation (A4.1) can be written in the
form of a Fokker-Planck equation. To do this we first introduce a continous dis-
tribution function W(u, u*,t) defined by [A4.2, 3, 1.28, 12.1, 35]

W(u,u*,t) = {5(b* —u*)5(b—u))

— 7'[—2 ‘H (ei(b+~u*)a*ei(b-u)a>d2a

— oo

=772 [Jtr{el® 40 eiC-a,()1d2g . (A4.10)

Here, o = o,+ie;is a complex quantity and d’a = d e, d ¢; is the two-dimensional
volume element. Expression (A4.10) is formally the Fourier transform of the
characteristic function (Sect. 2.2)
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Cla*, a, 1) = (" eib®y = tr{el?" elPp(1)} . (A4.11)
The factor 2 in front of the integral [instead of (2 7) %] appears because we
used complex notation. With the help of the distribution function every normally

ordered product of b* and b (i.e., one, where all bt stand left of all b) can be
calculated by using an integration over the distribution function

AL O @y = tr{(b ™) Bp(t)) = [ o/ W(u,u* )du. (A4.12)

The proof follows from the fact that the integration of (A4.12) in u space cor-
responds to a differentiation in a space

= (o) (5a)
5(“*) uIWd Uu= " - C(a, a*)
oia* dia

The distribution function W(u,u*) is the Glauber-Sudarshan [A4.5, A4.6] P
representation of the density operator

(A4.13)

a=a*=0

p=§|u)W(u,u*)(u|d2u, (A4.19)
where |u) are the eigenstates of the annihilation operator

bluy=ulu). (A4.15)
[If a distribution function for antinormal ordering is needed, the exponentials in
(A4.10) have to the interchanged.] To obtain an equation of motion for W we

multiply (A4.1) by exp(ib " a*) exp(ib ) and take the trace. By a proper cyclic
permutation of the factors under the trace and by using

(bl @ =ia*e? ", [e?%b*] =iae” (A4.16)
tr)(eib*oz“‘eibozb _ d
1 P} =—2C
dia
tr{b+eib+a*eibap} = Ty C (A4_17)
ia
(p+ aibtar iba 3’
trib*e e'%hpl= ———
‘ diairprpe

we obtain from (A4.1) an equation for the characteristic function (A4.11)

E)£=—ia)0 i—oz* 0 C—x|ia 6 +ia* .6 C
ot oo da* dia di1a*

+2xnp(ia®(a)C. (A4.18)
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The distribution function (A4.10) is the Fourier transform of C. It therefore
follows from W by the replacement

iea—» —98/0u, ia*> —0/0u*, 0O/0(a)-u, O/0(a*)—-u*.

We thus obtain from (A4.18)

8W/6t=LFpW
(A4.19)
2
Lpp=iw, —a—u— u* )+ x iu+ 9 u* |+ 2xny 0 .
ou ou* ou ou* oudu*
If we use the real variables
uy=Re{u}, wuy=Im{u},
(A4.19) takes the form
Lep=w au—au +x—a— u+1—n 9
FP 0 ouy ! ouy 2 ouy ! 2 * ouy
9 0
+x— u2+inth——— . (A4.20)
du, 2 du,

Obviously, the process described by the Fokker-Planck equation with the
operator (A4.20) is an Ornstein-Uhlenbeck process, Sect. 6.5. An equation of
motion for the averaged amplitude is easily obtained from the Fokker-Planck
equation with (A4.20) by multiplying it with u, and u,, respectively, and then
integrating the expression over u; and u#,. We thus derive for (u(¢)) = {u,(t))
+i{u, (1)) the equation of motion

Cu(®)y = —(wo+x) u(®)), (A4.21)
which clearly shows that the motion of the amplitude is damped.

Equation (A4.21) can also directly be derived from (A4.1) by multiplying
(A4.1) with b, using the commutation relation (A4.2) and then taking the trace

[<b(2)) = Cu(®)) = tr{bp(D)]].
The stationary solution of the Fokker-Planck equation (A4.19) reads
Wy(u,u*) = (nng) " exp(—uu*/ny) . (A4.22)

By inserting this expression into (A4.14) we recover the result (A4.9) for the
diagonal matrix elements. For the derivation

[Knjuy = |u"e™1“F/n! (A4.23)

must be used [see [A4.5] for a derivation of (A4.23)].
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A5. Alternative Derivation of the Fokker-Planck Equation

The nonlinear Langevin equation (3.67, 68), i.e.,
E=h(EN+g(&GOTWD), (AS5.1)
(F)Y=0, (I@re)y=20(t—t'), I Gaussian (A5.2)

may be transformed into a linear partial differential equation. By introducing
p(t) = 0(&() —x) (A5.3)

it may be easily checked by insertion and by using (4.6) that p(¢) obeys the linear
partial differential equation

ap(1)/dt =p(t) = [AM)+BOTDOIp®), (A5.4)

where A and B are operators with respect to x and are given by
K] K]
A(t)= ——h(x, D, B)=-—gx1). (AS.5)
ox ox

The distribution function W(x,t) follows by averaging (A5.3) over the different
realizations of I'(¢) (2.7), i.e.,

Wi(x,t) = {p(t)) = (L) — X)) . (A5.6)

An equation for the average {p(f)) can now be obtained using (AS5.2). For a
simple case [4 = 0, B(¢) independent of time and no operator] this was already
done in (3.76a). In the present case, A and B are noncommuting operators with
respect to x and they may depend on time. By using a proper representation of
the x dependence, relation (A5.4) can be cast into an equation for the vector p,
where A4 (¢) and B(¢) are noncommuting matrices. For this case, the following
result was derived by Fox [A5.1] for the Stratonovich rule (Sect. 3.3.3)

By =AW +B*O1<p1)) . (A5.7)

If we use the operators (AS5.5) and the “x representation” for p, (A5.7) trans-
forms to

()Y =A@ +B*O1Lp(D)) . (AS.72)

The derivation of (AS5.7, 7a) is performed by formally integrating (A5.4) (using
the time-ordered product) and then differentiating the averaged result [A5.1, 2].
Equation (AS5.7) is a special case of (A1.32a) for D =1 and y —» . The relation
(A5.7a) was used by Wodkiewicz in a number of cases [AS5.2, 3].
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Because of (A5.6), (AS.7a) may be written as

W=LgpW, (A5.8)

Lip=A+B2= — 2 h(e,0) + -2 906,002 g(x,1)
ox Ox Ox

9 S 8 o
= - =D+ =5 D), (A5.9)
X

ox

where D® and D@ are given by (3.95). Obviously, (A5.8, 9) is identical to the
Fokker-Planck equation (4.44, 45).

For the multivariable Langevin equation (3.110, 111) we may proceed in the
same way. By introducing

p(t) = 3(&1(8) = Xy1) ... 6(En(E) = XN) (A5.10)

the Langevin equations (3.110, 111) are transformed to the linear partial dif-
ferential equation (summation convention)

p=(A+B i ()p (A5.11)
with
0 0
A=—-—h(x,0, Br=-—gilixht), (A5.12)
ax,' o f

as may again be checked by insertion. Because of (3.111) we now have
{p)=(A+BB){p), (A5.13)
i.e., for the distribution function
W(xt, 1) = {p(1)> = (6(&1(H) — x1) ... (4N (D) — XN) D (A5.14)

we obtain (AS.8) with

LFP=A+BkBk
9 9 9
= %+ g2y,
ox, (x5 1) ox, Jik o, 9jk
) 2
== -——-—Di({X}, t) + Dy({x}, t) ’ (A515)
ox; X;0X;

where D; and Dj; are given by (3.118, 119). Obviously, (A5.15) is identical to
(4.94, 95). A similar derivation of the Fokker-Planck equation was given by
Graham {4.18].
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A6. Fluctuating Control Parameter

Here we are interested in the laser Langevin equation (12.4), where the control
parameter d fluctuates. Instead of (12.4) we use the normalized laser Langevin
equation with detuning (12.73) but without an additive noise, i.e.

db/di-(1+id)@-16»b=0, (A6.1)

where the control parameter (1 +id) @ now fluctuates according to (g >5220)

(A+id)a=(A+id)a+ M +iGsT+)/q—5>Ty) (A6.2)
with
(MDY =0, (O =26;0(-1). (A6.3)

Thus we consider the Langevin equation
db/di—(1+id)@—|b|)b =bIi+ib(sI+)/q—s>T3). (A6.4)

For the special case d =g =s=0 we obtain the normalized laser Langevin
equation (12.4) with fluctuating control parameter d.
In polar coordinates

b=re'? (A6.5)
equation (A6.4) transforms to
di/df = (a—F2)F+ Iy, (A6.62)
dg/di=6-(@—)+shi+)/q—sT,. (A6.6b)

These equations have been investigated by Graham [12.52]. He has shown that
(A6.6a,b) are the normalized version of

db/dt = [(a+iB)—(A+iB)|b|"1b (A6.7)
were « and g fluctuate according to

a=oay+ (1), B=Bo+Ipd) (A6.8)
with I(¢) and I(¢) given by

(T (1)) = Tp(8)) =0

(T L)) = Q0(t—1")

TR T(E')) = Qpo(t—1t')
(O TH(t')) = Qepd(t—1").

(A6.9)
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The transformation of (A6.7—9) to (A6.6a,b) is achieved by
t=(Q/t, F=V2A/Q,, @=0¢+Qt
a=20y/Q,, J6=B/A, Q= (ayB—BrA)/ A (A6.10)
qu[}/Qa’ S=Qa[}/Qa’

where r and ¢ are the polar coordinates of b, i.e., b = rexp(ig).
The Fokker-Planck equation corresponding to (A6.3, 6a, b) reads

a—u_/=LFpW
or
(A6.11)
Lep = -2 it +a—7) + &
FP or or
2 2
—6-((1—?2)i+q az+25 0 F.
0¢ 8¢ 0Fdgp

It should be noted that W is the distribution in rand ¢ space. It is connected to
the distribution W used in Chap. 12 by W=rW.
Stationary Distribution

Because no phase is preferred the stationary distribution cannot depend on ¢.
Because the probability current in 7 direction must be zero, we thus have

[F(1+a—r‘2)—%F}WSt=O. (A6.12)
r

From this equation we obtain for ¢ > 0 [8.5, 12.52]

- a—1 -2
7D (F) = V2 _r _r
w7 @ <l/5> exp < 5 > (A6.13)

where I' is the gamma function. Another stationary solution is given by
w@(r) = 1 (). (A6.14)
n

If the system starts at 7= 0 the noise b I; cannot drive the amplitude away from
r =0 and we then get (A6.14). For a =0 only the stationary solution (A6.14) is
possible. For further considerations we assume a > 0 and that we start with an
amplitude b being different from zero. Then we can omit the stationary solution
(A6.14).
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Transformation to a Fokker-Planck Equation with Additive Noise

First we assume that d = s = ¢ = 0. Then we only need to consider (A6.6a) with
the multiplicative noise force 7I3. Similar as in Sect. 3.3.1 we may change the
multiplicative noise to an additive noise by using the nonlinear transformation

y=In@F)2+a)y, F=)2+ae’. (A6.15)

Here the factor }/2+a is introduced because the potential of the Schrédinger
equation then becomes the Morse potential (A6.20). The Langevin equation
(A6.64a) for the variable y then takes the form

y=a—Q+a)e?+I; (A6.16)

and the Fokker-Planck equation corresponding to (A6.16, 3) reads

L

ot \ - (A6.17)
fmp = ——[a-Q+a)e?1 +—.

FP ay ayz

Here W is the distribution in y, ¢ space, i.e., W and W are connected by

W=wdi/dy=)2+ae’W. (A6.18)

The force F=a— 2+ a)ezy = —df/dy may be derived from the Toda potential
{A6.3]

fO0) = +as2e”—ay. (A6.19)

Transformation to a Schr()'dinger Equation

As discussed in Sect. 5.4 the Fokker-Planck equation (A6.17) can be transformed
to a Schrodinger equation with the potential (5.55), i.e.,

Vo) = LI 02— L7 () = (1 +a/2) (¥ - 2e¥) +a*/4. (A6.20)

If we write 2y = — ax the potential Vg— a?/4 is exactly the Morse potential used
in quantum mechanics to describe the binding of a molecule [A6.1]. The
potentials f(y) and V5(v) are plotted in Fig. (A6.1). It is clear from loocking at
the figure that for 4 = a2/4 a continuous spectrum of the eigenvalues occurs.

Discrete Eigenvalues

The discrete eigenvalues of the Morse potential or of the Fokker-Planck equation
(A6.11) withg =s=0J=0are given by [8.5, 12.52, A6.1]

A(a)=2na—4n®, 0=n<a/d, n=012,.... (A6.21)
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The eigenfunctions of (A6.11) with g =5 = J =0 can be expressed in terms of
Laguerre polynomials [8.5, 12.52]

¢n(i) — an / Ws(tl)(;) (fZ/z)~1/4—n+a/4L£l—2n+a/2)(f2/2) (A622)

Eigenvalues for the General Case g £0, s*+0, d £0

If we insert the separation ansatz
W(F, §,1) = D,,(F)e'’Pe (A6.23)

into the Fokker-Planck equation (A6.11) we can again transform the equation
for &,, to a Schrodinger equation with the Morse potential. Introducing

a,=a+2iv(é-s), (A6.24)

y=In#/\)2+a,, F=}2+a,e’, (A6.25)
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fO) =1 +a,/2)e? —(a—2isv)y (A6.26)
we obtain for () defined by

@,(F) = exp[—y— 3/ w,n(¥) (A6.27)

the Schrédinger equation

2
[dd 5= Vs(0,a))+ Ayn— vz(q+52—26s):| v, =0 (A6.28)
Yy

with the Morse potential having the complex parameter @,
Ve a,) = (1 +a,/2)%(e” - 2e¥) +a¥/4 . (A6.29)

By comparing (A6.28) with the eigenvalue equation for g = 6 = s = 0, i.e. with

2
{%  Vsw,a)+ An(a)} Wn=0 (A6.30)

we thus conclude from analytic continuation @ — a, that 1, is given by [12.52]
Ay =A,@)+(q+062—285)vi=2na,—4n*+(@+0*-2ds)v>.  (A6.31)
The functions y,, can only be normalized if
O=n<a/d. (A6.32)

(Because of ¢ <52, the factor in front of v? is always positive and therefore the
real part of the eigenvalues cannot become negative.) Because the constants a,
are now complex the ecigenvalue problem (A6.28) is not longer Hermitian.
Therefore the adjoint functions must now be also obtained, which can be done
by analytic continuation as explained at the end of Sect. 6.3. These normalized
discrete eigenfunctions as well as the continuous eigenfunctions and their
adjoints are given in [12.52]. (In this reference also correlation functions and in
[A6.2] transient moments have been investigated.) Thus all eigenvalues and
eigenfunctions can be obtained analytically for the Langevin equation (A6.4)
with a multiplicative noise term, whereas the laser Langevin equation (12.6) with
an additive noise term can be solved analytically only for the stationary case and
well outside the threshold region.



S. Supplement to the Second Edition

In this supplement we give a short review of some material, which is closely
related to the problems discussed in the first edition of this monograph. Most of
these new results were developed after completion of the first edition. (For a list
of some books and reviews, see [S.1 —15]). In the following we mainly list some
new references and, sometimes, explain the basic ideas of the reported work. The
connection with the respective chapter or section of the main text is explicatly
given.

S.1 Solutions of the Fokker-Planck Equation by Computer
Simulation (Sect. 3.6)

Various methods have been developed to simulate Langevin equations by analog
or digital computers, and to calculate stochastic integrals numerically [S1.1 —7].
The main goal of these methods is, of course, to obtain good accuracy without
requiring much computer time. Special methods have been developed for addi-
tive and multiplicative noise processes to obtain good accuracy for moments or
for the distribution function. In [S1.7] the accuracies of some of these methods
have been compared.

S.2 Kramers-Moyal Expansion (Sect. 4.6)

In Sect. 4.6 it was pointed out for a simple example that truncated Kramers-
Moyal expansions of order higher than two may be quite useful. In Sect. 4.6 a -
function initial condition was used. As was pointed out by Pawula [S2.1], a sum
of J-functions should finally appear for a very large truncation index N. This
point and the problem of various other initial conditions were investigated in
[S2.2]. As shown in this reference, the sum of J-functions (each J-function
appears in an oscillating fashion) can be obtained for large N (N = 67). It was
further demonstrated in this reference that for smooth initial conditions a better
convergence with respect to the truncation index can be achieved. In particular,
for the initial condition

W(x,0) =sinnx/(nx), (S2.1)
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which leads at the discrete points x = m to the initial condition (4.66), the
changes can not be seen in the plot for N = 7 for the parameters of Fig. 4.2. The
continuous approximation of the random walk problem on a spatial lattice is
related to the problem of approximating a discrete process by a continuous one,
as discussed in Sect. 4.6. It was investigated by Doering et al. [S2.3].

S.3 Example for the Covariant Form of the
Fokker-Planck Equation (Sect. 4.10)

A simple example for a non-vanishing curvature tensor is the Fokker-Planck
equation on a sphere. Let us discuss the simplest case. This is a Fokker-Planck
equation (FPE), without a drift-term and with a uniform diffusion term, i.e., it is
the diffusion equation on a sphere of radius a. In polar coordinates the diffusion
equation reads

2
W=DZW=£< 1 9 sin® 9 + ! 9 >W. (S3.1)

a’ \sin®@ 93O 90 sin’® 9¢?

Here A is the angle-dependent part of the Laplace operator, and W is the prob-
ability density on the surface of the sphere. For the probability density w of the
©, ¢ coordinates we have

w=Wa’sin®. (S3.2)

The FPE for w takes the form

2 2
»‘v=D<a cos® o 98 ! >w. (S3.3)

2 \80 sine@ 00° 8¢’ sin’@

Thus we have a spurious-drift coefficient, and diffusion coefficients given by

D cos®
Do= — , D,=0 S3.4)
@ a’ sin® i’ (
D D 1
Doo=—, =0, Dyy=— ——.
00 a’ P oo 44 a’ sin’@

The invariant measure w, see (4.139), is expressed by

w=|/DetD,-jw:£2 ! w=DW. (S3.5)

a® sin®

The component R (?@(,, of the Riemann curvature tensor takes the form, see [S3.1]
and (4.152),
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RS0, =sin’0. (S3.6)

It does not vanish everywhere and therefore one cannot find a global transforma-
tion so that the diffusion coefficient can be normalized to the unit matrix every-
where. For a discussion of Brownian motion in the presence of constraints, see
[S3.2].

S.4 Connection to Supersymmetry and Exact Solutions of the
One Variable Fokker-Planck Equation (Chap. 5)

In Sect. 5.8 we have investigated the solutions of the one-dimensional FPE with
inverted potentials. As discussed by Bernstein and Brown [S4.1] there is a close
connection between supersymmetric quantum mechanics [S4.2], see also [S4.3],
and the inversion of the potential in the Fokker-Planck equation. In [S4.1] the
lowest nonzero eigenvalue of a bistable potential was calculated by determining
the lowest eigenvalue of the upside-down metastable potential by a variational
method. Jauslin [S4.4] has used the supersymmetry property to construct poten-
tials with arbitrarily prescribed eigenvalues. Exact solutions for bistable poten-
tials have been obtained by Hongler and Zheng [S4.5] and recently by Englefield
[S4.6]. In contrast to the model discussed in Sect. 5.7 these models have con-
tinuous potentials. It was shown by Leiber et al. [S10.14, 15] that the inverted
potential is isospectral also for colored noise, i.e. the inverted problem has the
same eigenvalues as the original problem.

S.5 Nondifferentiability of the Potential for the
Weak Noise Expansion (Sects. 6.6 and 6.7)

In the stationary state w of (6.143, 144) is called the nonequilibrium potential. It
must be minimal on the attractors of the deterministic motion [S5.1]. In the
weak-noise limit it satisfies a Hamilton-Jacobi equation [(6.144) for w = 0] [S5.2]

p, 2 p, W O _, (S5.1)

ox; ' dx; Ox;

It has been shown that the derivative of w may have discontinuities for certain
surfaces if the Hamilton-Jacobi equation is not integrable [S5.2,3]. It was
further shown in [S5.4] that for coexisting attractors we may also have discon-
tinuities even if the Hamiltonian belonging to (S5.1) is integrable. Discontinuities
also occur for the Brownian motion in a periodic potential, as discussed in Chap.
11, in the limit of small friction (Fig. 11.24).
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S.6 Further Applications of Matrix Continued-Fractions (Chap. 9)

The matrix continued-fraction (MCF) method for solving linear partial and
ordinary differential equations has been applied to a variety of other problems.
In [S6.1] this method has been applied to the one-dimensional Fokker-Planck
equation for the quartic potential. For this simple example all the 2 X 2 matrices
needed for determining the moments and the eigenvalues are given. In [S6.2] the
method was applied to a Fokker-Planck equation describing the thermalization
of neutrons in a heavy gas moderator. The problem of differential equations with
a parametric excitation which is periodic in time was also solved by this method
in [S6.3 —5]. In [S6.6] we have applied the MCF algorithm for determining the
eigenvalues of the Schrodinger equation with time-independent polynomial and
nonpolynomial potentials. The method was applied to two-level atomic systems
coupled to a vibrational mode [S6.7]. In [S6.8] the time-dependent expectation
values for the Jaynes-Cummings model have been obtained by first deriving a tri-
diagonal vector recurrence relation for the moments. After Fourier transforma-
tion the frequency-dependent recurrence relation was solved in terms of matrix
continued fractions. The inverse Fourier-transform then finally leads to the time-
dependent expectation values. Applications of the MCF method to the Kramers
equation for the double-well potential, to the calculation of correlation times, to
the escape problem in the presence of colored noise, and to Fokker-Planck equa-
tions with non-positive-definite diffusion matrices and to differential equations
with derivatives up to third order have been discussed in supplements S7, S9, S10
and S11.

An important question concerns the complete sets, which are used for solving
the differential equations. We have mainly used the classical polynomials and
corresponding weight functions, like Hermite functions for coordinates defined
in the interval [— o, o] and Laguerre functions for coordinates defined in
[0, o]. It is, of course, possible to employ other orthogonal polynomials. For the
laser equation (12.40), for instance, it seems to be more appropriate to use ortho-
gonal polynomials with the weight function being the stationary solution of
(12.40). Shizgal and coworkers [S6.9,10] have employed this type of poly-
nomials. In this way an improvement of the convergence is expected because the
orthogonal set is better adapted to the problem under consideration. The dis-
advantage, however, might be that the coefficients of the recurrence relations for
these polynomials can only be generated by a numerically unstable algorithm.
Therefore a large number of digits (e.g., 100) must be used to obtain these recur-
rence relation coefficients for large indices.

S.7 Brownian Motion in a Double-Well Potential (Chaps. 10 and 11)

In Chap. 11 the Brownian motion in an inclined periodic potential was inves-
tigated. Almost the same procedure can be applied to the Brownian motion in a
double-well potential. In contrast to the periodic case, however, an expansion in
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Hermite functions instead of a Fourier series for the position coordinate was
used in [S7.1, 2]. Eigenvalues and the spectrum of correlation functions for the
quartic potential have been obtained for normalized damping constants in the
range 0.01—10 and for energy differences up to AE/(kT) = 10. The smallest
nonzero eigenvalue describes the transition rate from one potential well to the
other. For this transition rate an analytic result (in terms of an integral) has been
obtained by Mel’nikov and Meshkov [S7.3] for arbitrary damping constants in
the limit of large AE/(kT). (For a metastable potential, see [S7.4]).

The spectrum of the position-correlation function has been measured [S7.5]
and shown to be in good agreement with the numerical result of [S7.2]. For small
damping constants the energy variable has to be introduced. Eigenvalues and
eigenfunctions for this case have been obtained in [S7.6]. The zero-friction limit
of the position-correlation function was investigated in [S7.5, 7, 8] and in the
appendix of [S7.2]. A singular perturbation approach was also applied to the
escape problem [S7.9]. More references on this subject may be found in the his-
torical review by Landauer [S7.10] and in [S7.2, 11, 12].

S.8 Boundary Layer Theory (Sect. 11.4)

For very small damping the eigenfunction for the double-well Kramers problem
describing the transition between the left and the right well (lowest nonzero
eigenvalue) depends only on the energy inside the well. At the critical energy
given by the barrier height separating the two minima, the eigenfunction must
depend on x because above the critical trajectory particles leave the wells at the
maximum of the potential. Thus particles of “opposite sign” travel to the other
well, and therefore an x-dependence near the critical trajectory is observed. It
turns out that the width of this boundary layer, in which an x-dependence must
be taken into account, is proportional to the square root of the friction constant.
This boundary layer theory leads to coupling of the eigenfunction @(E) and its
derivative d®/dE according to

SE) = —x |/ HEIO dpE)
¢ 2n dE

where [ is the action variable at the critical trajectory, y the friction constant, @
the normalized temperature (11.29) and x a numerical constant. The connection
of @ and d¢/dE was proposed by Biittiker et al. [S8.1] and by Biittiker and
Landauer [S8.2], see also [S8.3] for a review. The precise value of constant «,
however, was not obtained in these references. As explained in [S7.6] a similar
boundary problem appears when calculating the stationary distribution for the
Brownian motion in an inclined periodic potential. In [S7.6] it was shown that
the constant x is the same for the inclined periodic potential problem and the
double-well potential. In [S7.1, 6], the value xpw = 0.8554 was obtained, see also
(11.123). It was shown by Mel’nikov and Meshkov [S7.3] that x can be expressed
analytically by Riemann’s Zeta function according to

(88.1)

E=E,
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kpw = —(2—1/2) {(+) = 0.855455865... . (S8.2)

In [S7.6] we have also calculated the boundary layer distribution function. For
an integral representation of the transition rate, see [S8.4].

For a metastable potential the constant «, in [S8.1] is given by the Zeta func-
tion [S7.3]

Kms = —((4) = 1.4603545088 ... . (S8.3)

The boundary layer distribution function was calculated for the metastable
potential in [S8.5].

The Zeta function {(3) also arises in the Kramers equation with an absorbing
wall boundary condition as mentioned at the end of Sect. 8.3. This problem has
been worked out in detail by Marshall and Watson [S8.6, 7].

The analytic expressions of the eigenfunctions and eigenvalues for small
friction given in Sect. 11.9.1 have also been investigated by Renz [S8.7].

S.9 Calculation of Correlation Times (Sect. 7.12)

In Sect. 7.2 general expressions for correlation functions have been presented.
For the one-variable case one may define a normalized correlation function by

&) =K(t)/K(©0),
K(t) =dArx@)Aarx@))), (S9.1)
Ax() =r(x(1)—Lr).

The subtraction of the average {r) guarantees that the normalized correlation
function @(¢) vanishes for large times. Obviously @(¢) is normalized according
to #(0) = 1. A correlation time may be defined by

oo

T={o()de. (59.2)
0

For an exponential dependence we then have @(¢) = exp(—¢/T). For the one
variable Langevin equation (3.67, 68) or the corresponding one-variable Fokker-
Planck equation (4.44, 45) with D and D@ given by (3.95) an analytic expres-
sion for (S9.2) can be derived in the following way, see [S9.1, 2]. (In [S9.1, 2]
only the special case r(x)=x was considered. The generalization to r(x) is
straightforward.) The general expression (7.13) applied to K(¢) may be written in
the form

K(t) = [Ar(x)w(x, t)dx, (59.3)

where w(x, t) obeys the one-dimensional Fokker-Planck equation
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%‘ti = {— gx- [ (x)+g' (x)g ()] + aa—;gz(x)} w (S9.4)
with the initial condition

w(x,0) = Ar(x) Ws,(x) . (S9.5)
Introducing

p(x) = :f)ow(x, £ydt (9.6)

(59.2) takes the form (x is assumed to be defined in the range — o < x < )
y T Ar(x) p(x)dx (59.10)
K@) - ' '

Because of (§9.4 and 5) p(x) must obey

2
AP W () = {— % [h(x) + g (¥) g ()] + % gz(x)}p(x) L (89.11)

This equation can be integrated leading to
H J(x")
plx)=Ws(x) | 250 ¢ (59.12)
e P W ()
with f(x) given by
X
Jx)=— § Ar(x") Wg(x")dx' . (S9.13)

Inserting (59.12) into (S9.10) we find, after integration by parts, the following
analytical expression for the correlation time

1 2 fix)

= (89.19)
K(0) = g*(x) W (x)

If x is not restricted to the interval [ - o, o] but defined as in [S9.1] in [0, o] the
lower limit of integration in (S9.13, 14) has to be replaced by 0. Using (S9.14) for
the special case of [S9.1.2], Nadler and Schulten [S9.3] have obtained the
following analytical expression for A defined in (12.71)

)-eff = K(a’ 0)/B s

oo

B = {dT F()/141 W,(D)] ,
0
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F(D= - —2  ferf[((T-a)/21-1} + 2 Ws (D, ($9.15)
erf(a/2)

where Wy, (I) is the stationary distribution (12.45). (For further investigations of
Aere, see [S9.4] by San Miguel et al.). Correlation times for a laser model with
white pump noise and quantum noise have also been obtained [S9.5] by solving
(S9.11) numerically in terms of continued fractions.

S.10 Colored Noise (Appendix A1)

The simplest problem in colored noise may be stated as follows. Similarly to the
stochastic differential equation (3.67) we have

x=h(x)+gx)-e), (S10.1)

where the random Gaussian force £(f) has a finite correlation time 7 and is deter-
mined through the correlations

)y =0; <(e()e()y =Drrye 71V, (510.2)

For 7 0 the correlation function in (S10.2) reduces to 2D J(¢ —¢') and thus we
recover the white-noise case. For g(x) =1 and /(x) given by

h(x)=ax—bx’= —dV(x)/dx . (S10.3)

Eq. (510.1) describes the overdamped motion of a particle in the Landau poten-
tial

Vix)= —ax¥2 + bx*/4 (510.4)

driven by additive colored noise. By introducing the new variable &, which obeys
the Langevin equation

é=—e/t+(/D/T)I(1), (510.5)

where I'(¢) is the Gaussian white noise force (3.68), we obtain the correlation
function (S10.2). Thus the two Langevin equations (S10.1, 5) describe the above
colored noise problem. The Fokker-Planck equation for the two-dimensional
distribution W(x, ¢) corresponding to (S10.1, 5) reads

oW 3 1 9 D 3
=l )+ g)e]l+— — e+ — — (W S10.6
ot { Ox ) ) T 0¢ 72 882} ¢ )

A number of different methods have been developed by various schools to treat
colored noise problems, see [S10.1 —9].
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Because (S10.6) is a two variable Fokker-Planck equation we may solve it by
the matrix continued-fraction method. For the application of this algorithm we
expand W(x,¢) into two complete sets. One of these sets are the Hermite func-
tions y,(€) [see (10.38 —40) with v = ¢ and v% = D/1] the other one are suitable
orthogonal functions ¢,,(x). The explicit expansion reads

W(x,€) = po(x) wo(&) L Cr' @m(x) yu(e) - (510.7)

Insertion of (S10.7) into (S10.6), multiplication by @,, (x)/py(x) and w, (e)/
wo(€) leads after integration over ¢ to (A1.23) where the matrix elements of the
matrices 4 and B are given by

g ‘5% a_i[h(x)po(xmm(x)]dx,

2o (510.8)
BmM — §¢’”_(x) i [g(x) po(x) @m(x)] dx .

po(x) Ox

The arbitrary function py(x) may be chosen in such a way that integrals take
simple forms. The integration boundaries in (S10.8) cover the whole accessible
range of x. For short noise-correlation times 7 we obtain the one variable Fokker-
Planck equation (A1.31). For ¢/7> 1 (A1.31) reduces to (A1.32a). In x-represen-
tation explicit insertion of the operators

9

Y g(x) (510.9)

ox

into (A1.32a) leads in first order in 7 to

3 3 3 d 9
Ly(0)= ——h(x)+D—g(x)—gXx)+1D|—9g—(gh'—g'h
0(®) ™ (x) axg()axg() [axgax(g g )}
a 1 ! ! 1 62 2 ! !
= —a—[h+Dg g+Dzg'(gh'—g'h)] +DF[g +19(gh’'—g'h)] .
* * (510.10)

This relation agrees for Gaussian noise with (4.180) of [1.10] Vol. I and in first
order in 7 with [Ref. S10.9, Eq. (2.36)].

The method described above was applied to a dye-laser model with colored
noise by Jung and Risken [S10.10]. In this case we have A(x) =2(1-x)x,
g(x) = 2x and, because the variable x is defined in the interval [0, o], we have
used Laguerre functions as the complete set in x. The stationary result for the
intensity distribution w(x) = { W(x, ¢) de was found to be in good agreement with
results obtained by digital simulation [S10.9].

The Landau potential (§10.4) with additive colored noise was treated by Jung
and Risken [S10.11] with the MCF method. Here an expansion in Hermite
functions was used for the x-variable. Stationary results for the one-variable dis-
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tribution w(x) = | W(x,e)de and for the two-variable distribution as well as
results for the lowest nonzero eigenvalue have been obtained. Results obtained
by analog simulation by Moss and McClintock [S10.12] are in good agreement
with the two-variable distributions. In [S10.13] the small-7 equation with
(S10.10) was used to calculate the small-7 dependence of the lowest nonzero
eigenvalue. For the Landau-potential it was shown in that reference that the
derivative of the eigenvalues with respect to 7 can be obtained by the eigenvalues
of the white-noise case in the limit 7 —0.

In [S10.14,15] bistable periodic-potential models have been considered.
Because of the good convergence of Fourier expansions eigenvalues could be ob-
tained for much larger correlation times and lower noise intensities than for the
Landau-potential in [S10.11]. Recently the MCF method [S10.11] was improved
so that also larger correlation times could be handled for the Landau potential
[S10.16] but not as large as in [S10.14, 15]. In [S10.17] a laser mode! with white
quantum noise and colored pump noise was treated, see also [S10.18]. In
[S10.19 — 21] (see [S10.22] for a review) the locking equation describing the phase
dynamics of a ring-laser gyroscope with colored noise was investigated by the
matrix continued-fraction method and by analog simulations.

Luciani and Verga [S10.23] have used a functional approach to obtain an
expression for the mean first passage time valid for small and large correlation
times. Furthermore an interpolating expression for the mean first passage time
was given by Tsironis and Grigolini [S10.24] which approximates the numerical
solution quite well. In [S20.25] an asymptotic expression for large 7 was also
obtained. Finally the paper by Doering et al. [S10.26] should be mentioned where
the mean first passage time was calculated by assuming an absorbing wall at the
top of the potential barrier which separates the two minima of the Landau poten-
tial. For this case a square root dependence of the correlation time was found for
the mean first passage time.

S.11 Fokker-Planck Equation with a Non-Positive-Definite
Diffusion Matrix and Fokker-Planck Equation with Additional
Third-Order-Derivative Terms

In quantum optics one usually has to solve an equation of motion for the density
operator, which describes the system under consideration. For simple model
systems (one mode only, atomic coordinates are eliminated adiabatically) only
the creation and annihilation operators of the light field enter in this equation.
Continuous representations of the density operator such as the Glauber-
Sudarshan P function [12.1, A4.5, 6], the Q functions or the Wigner function
[S11.1] may be introduced, by which the equation of motion of the density
operator is transformed into an equation of motion for these continuous quasi-
distribution functions of a complex variable. (For a review on quasi-distribution
functions see [S11.2].) For the model of Drummond and Walls [S11.3] describing
dispersive optical bistability this equation is a Fokker-Planck equation with a
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non-positive definite diffusion matrix for the P and Q function or with addi-
tional third-order-derivative terms in it for the Wigner function. The question
arises how to solve these equations.

For the P and Q function the Fokker-Planck equation has a diffusion matrix
which is not positive definite or positive semidefinite. Such an equation has been
termed pseudo-Fokker-Planck equation [S11.4] because it cannot be interpreted
as describing the equation of motion for the probability of a Brownian particle
under a suitable field of force. A simulation of this pseudo-Fokker-Planck equa-
tion is not possible. One may, however, obtain an equation with a positive
definite diffusion matrix for the positive P function by doubling the phase space
[S6]. A simulation is then possible as it was done, for instance, by Dorfle and
Schenzle for a different problem [S11.5]. One may also use the complex P func-
tion [S6] and one can then obtain the stationary solution for this model [S11.3].
For direct numerical solutions, however, the doubling of the phase space, where
one has to use two complex variables (four real ones) instead of one complex
variable (two real ones) seems to be not very useful. Vogel and the author have
solved these pseudo-Fokker-Planck equations by the matrix continued-fraction
method [S11.4, 6 — 8]. For the application of this method one does not need a
positive definite or a semidefinite diffusion matrix. It even works for the Fokker-
Planck equation with third-order-derivative terms [S11.9] which arises in connec-
tion with the Wigner function for the dispersive optical bistability model.

For the model of Drummond and Walls squeezing of the light field [S11.10]
occurs, see [S11.7]. In such a case the P function does not exist. As shown in
[S11.4] the expansion coefficients of the P function do exist because they are con-
nected with the moments. For determining eigenvalues, the matrix continued-
fraction method can also be used for the P function as explained in [S11.4]. It
was found that the eigenvalues agree within the numerical accuracy for the dif-
ferent quasi-distribution functions [S11.4, 9]. For optical bistability the lowest
nonzero eigenvalue is very important because it determines the transition rate
between the two nearly stable states. (For reviews on optical bistability, see
[S11.11 — 14].) Without thermal fluctuations the transitions, which are caused by
quantum fluctuations, and which lead to the quantum tunneling rates, determine
the ultimate stability of the bistable states. It has been shown in [S11.4, 8, 9] that
the tunneling rate (= lowest nonzero eigenvalue) shows an interesting oscillating
variation as a function of a system parameter, by which the photon number
inside the cavity scales. By using a completely different method applicable for
small cavity damping [S11.15,16] these oscillations have also been found
[S11.16] in complete agreement with the results of the matrix continued-fraction
method. It is interesting to note that the ‘nonclassical’ terms of the Fokker-
Planck equation seem to be responsible for these oscillations. If the nonclassical
terms are neglected (i.e., make the diffusion matrix positive definite, neglect
third-order-derivative terms) these oscillations disappear [S11.9]. (Classical
Fokker-Planck equations for dispersive optical bistability have been treated by
Graham and Schenzle [S11.17) and by Haug et al. [6.20].)

It should be noted that in [S11.18] it was already mentioned that Fokker-
Planck equations with a non-positive-definite diffusion matrix appear for absor-
tive optical bistability. In [S11.19, 20] a Fokker-Planck equation with linear drift
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and non-positive definite but constant diffusion matrix have been treated, but no
distribution function was obtained. A simple model, where the diffusion matrix
is not positive definite, was presented in [S11.4]. The Fokker-Planck equation
for this model reads (g > 0)

oP ) ) 0° 8’
— = —(x—o)+—(+ox)+t—-—qg—5 |P. (S11.1)
at L)x 3y ax* 9y’

The drift terms describe a damped rotation according to the deterministic equa-
tions

X=—-Xx+wy, y=-y—wx. (S11.2)
The stationary solution exists if the conditions

g<t and 1+ o*>1+q)¥(1-q)° (S11.3)
are fulfilled. Thus the negative diffusion coefficient should be smaller than the

positive one and the rotation rate should be large enough. The stationary distri-
bution is Gaussian with a positive definite variance matrix ¢ given by

1 1+ w 1+
011=7<1—CI+ q2>’ 012= ——— 7

2 1+’
1 1+
022=7< —q- q2>‘ (S11.4)

For the time-dependent case, see the appendix of [S11.4].
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method 394ff
stationary cumulants 386f
stationary distribution 432f
stationary expectation values 384ff
stationary moments 384f
stationary solution 384ff
transformation to additive noise 433
transformation to Morse potential 433ff
transient moments far above threshold
406
transient solution for amplitude 402f
transient solution for intensity 398ff
Laser intensity, moment equation 199,
384
Laser intensity moments 215f
Laser Langevin equations
fluctuating control parameter 431ff
linearization of - 381
Laser light, statistical properties 374ff
Light, statistical properties of laser - 374ff
Linear process for fast variable, adiabatic
elimination 192ff
Linear response 163ff, 276
connection to lowest eigenvalue 345
for Kramers equation 168f
for Ornstein-Uhlenbeck process 171
of velocity for parabolic potential 177
to energy 170
to temperature 169f
Linear response functions 164ff
Linewidth of laser light amplitude, stationary
390f
Linewidth of laser light intensity, stationary
391 ff
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Ljapunov function 135

Locked solution 278, 328

Lowest eigenvalue of Fokker-Planck equation
158

Markov approximation in projector formalism
195
Markovian variables
properties of time-integrated -  184ff
time integrals of - 184ff
Markov process 9, 27f
Markov property 59f
Master equation 11
for birth and death process 76
for continuous variables 146f
for generation and recombination
process 76
for Poisson process 78
generalized 11
with nearest neighbor coupling 198
with two nearest-neighbor coupling 201
Mathieu equation 222f
generalizations 223f
Matrix continued-fraction method 121f, 218f
application to partial differential equations
160f
Matrix continued-fraction solutions of Kramers
equations 249ff
Maxwell distribution, one-dimensional 16, 73
Mean-squared deviation 19
Mean-squared displacement 34ff
Mean first-passage time (see also First
passage time) 182
Memory effects 9
Memory function 213
for Kramers equation, inverse friction
expansion 261
Memory kernel 213
for Kramers equation 251
Memory matrix-kernel solution for vector
recurrence relations 219
Metastable potential
asymmetric 128f
diffusion over barrier 125ff
Metastable rectangular potential well 119
Metric tensor 94f
Mobility 276
connection to diffusion constant 343
linear and nonlinear 276
Moments
connection to cumulants 18
for laser intensity, equation of motion
199, 384
for stationary intensity of laser
215f
of first-passage time 180
of first-passage time, equation 183
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Morse potential, application to fluctuating
control parameter 433ff

Motion in periodic potential, without
noise 329ff

Multiplicative noise 44

Nakajima-Zwanzig projection formalism,
connection to adiabatic elimination 194f
Natural boundary condition 102f
Noise
additive 44
colored 3, 32, 416ff
for Kubo oscillator 414ff
of spontaneous emission 375
multiplicative 44
non-Markovian, reduction to Markovian 60
white 3, 32
Noise-induced drift see Spurious drift
Noiseless motion in cosine potential 329ff
low friction 331ff
Non-Hermitian problems, reduction to
Hermitian ones by analytic continuation
145
Non-Markovian noise, reduction to Markovian
60
Non-Markovian process 9
Nonlinear Langevin equation
one variable 44
several variables 54
Nonlinear response 276
Normalization
for motion in periodic potential 286f
of eigenvectors of Kramers equation 256
of the diffusion coefficient 96f
of the probability distribution 72
several variables 85
of variables for Kramers equation 230f
Numerical integration method for solving the
Fokker-Planck equation 120f

Odd variables 147
Onsager-Machlup function 75f
Operator equation for detailed balance
condition 147, 148
Ornstein-Uhlenbeck process 153ff
for damped harmonic oscillator 428
for laser 381
for one variable, joint distribution 109
joint probability 156
potential condition 156f
several variables 38ff
solution by Fourier transform 42ff
solution for one variable 100f
spectral density matrix 43
stationary distribution 156
transition probability 156
two-dimensional 238ff

with external field 171
Orthogonality of eigenfunctions 104
Oscillator, self sustained 374

Padé approximants 214
Parabolic potential
Green’s function for Brownian motion 177
inverse friction expansion 265f
Kramers equation for inverted - 245ff
solution of Fokker-Planck equation for -
108f
Partial differential equations
application of recurrence relations 196ff
reduction to vector recurrence relations 202
with multiplicative harmonic time
dependence 225f
Path integral solutions of the Fokker-
Planck equation 74f
Pawula theorem 70f
Pendulum, Brownian motion of mathematica] -
280
Periodic boundary condition 102f
Periodicity of stationary solution for periodic
potential 315ff
Phase between superconductors 282
Phase locked loop 283ff
order of - 285
Photoelectron counting
factorial moment 408f
for arbitrary time intervals 412f
Photoelectron counting distribution
connection to intensity distribution 408ff
for laser light (measured), near threshold
411f
for laser light, short time intervals 409
Photon counting see Photoelectron counting
Poisson distribution 78
Poisson process 78ff
special birth and death process 76
Positivity
of distribution functions, one variable 75
of distribution functions, several variables
86
of eigenvalues 104f
of real part of eigenvalues
Potential
effective, for low friction motion 328
of Fokker-Planck equation, calculation from
stationary solution 108
of the one-variable Schrédinger
equation 107
parabolic 108f
parabolic, inverted 109f
periodic see Brownian motion
Potential conditions 141
Ornstein-Uhlenbeck process
simplified form 133f

143f

156f



Probability current 72
contravariant form 93
for Kramers equation 230
for N variables 84, 133
reversible and irreversible 150
Probability density 14
for a time-dependent variable 25
for discrete variables 15
for several time-dependent variables 30
for several variables 19
negative values 80
Projection operator formalism for elimination
of variables 194f
Pulse-response function 165
Purely random process 27

Random process
general 28
purely 27
Random variables 13
several, time-dependent 30f
transformation, one variable 16
Rayleigh equation 374
Ray method see WKB method
Recombination process 76
Recurrence relations
finite tridiagonal 198
one-sided 198, 212
truncation of - 204
two-sided 212
upiteration of - 205, 320f
for vectors 161
M nearest-neighbor coupling 200
reduction to vector - 200
pentadiagonal 200
scalar 197ff
tridiagonal
applications 196ff
solutions 196ff
vector 199ff
for ratios 203
for vectors
eigenvalue problem 220ff
initial value problem 217ff
memory matrix-kernel solution 219
solutions 216
Taylor expansion method 220
tridiagonal forms with higher derivatives
222
uniqueness of solutions by continued
fractions 216
Recursion relations for inhomogeneous
tridiagonal systems 213
Reduction of number of variables 179
Reflecting wall 102f
Relaxation function 166
Relevant variables 189
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distribution function 191
for low friction 301
Response (see also Linear response)
linear and nonlinear 276
linear systems 163
functions
after-effect-response 166
for constant diffusion tensor,
detailed balance 168
for Brownian particles in periodic
potential 347ff
for linear response 164ff
pulse-response 165
step-response  165f
of dipoles in external field 347
Reversible drift coefficients 149f
Reversible operators 150, 231f
Reversible part of Kramers equation, solution
232
Reversible probability current 150
Rice’s method 43
Riemann’s curvature tensor 95
Rotating wave approximation 374f
Rotation of dipoles in a constant field 282f
Running solution 278, 328

Schrédinger equation
for anharmonic potential 201f
for discrete variable 198
transform of one-variable Fokker-Planck
equation 107
Schrédinger potential
infinite square well 110f
of Fokker-Planck equation 142
Semi-invariants see Cumulants
Sine-Gordon equation, connection to equation
of motion in periodic potential 285
Slaving principle 189
Slip of the slow variable 274
Slow variables 188f
distribution function 191
for periodic potential 279
Smoluchowski equation (see aiso Brownian
motion in periodic potential, high friction)
7f, 96, 257
correction terms  293f
derivation from Kramers equation 257
stationary solution 98
Spectral decomposition of matrix 155
Spectral density 30
connection to correlation function 173f
connection to susceptibility 174
Spectral density matrix, Ornstein-Uhlenbeck
process 43
Spontaneous emission noise 375
Spurious drift 45, 47, 50
several variables 55
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Stationary distribution
Ornstein-Uhlenbeck process 156
for Kramers equation 240
Stationary process 26
Stationary solution 144
of one-variable Fokker-Planck equation 98
uniqueness 134ff
Statistics of laser light 374ff
Step-response function 165f
Stochastic differential equation for Brownian
motion 2, 7
with colored Gaussian noise 414ff
Stochastic force 2f
Stochastic process, classification 26
Stratonovich’s definition of stochastic
integrals 50ff
Streaming operator 150
Sturm-Liouville equation form of Fokker-
Planck equation 106
Summation convention see Einstein’s
summation convention
Sum rules 171, 176
for susceptibility 176
Superconductor in Josephson junction 281f
Superionic conductor model 280f
Susceptibility 277
complex 172
Cole-Cole plot 352
for Brownian motion in periodic potential
351€f
for Brownian motion in parabolic potential
177
for Brownian motion in periodic potential,
zero friction limit 355ff
for Brownian particles in periodic potential
347ff
for even and odd variables 175f
for rotating dipoles 349
Symmetry relations for eigenfunctions of
Kramers equation 256

Taylor expansion for solving tridiagonal
recurrence relations 214

Telegrapher’s equation 258

Thermal velocity 231

Time-integrated Markovian variables,
distribution 184ff

Time-integrated velocity for Brownian particle
187f

Time integral of Markovian variables

Time scales, slow and fast 188

Trajectories for motion in cosine potential
329f

Transformation of variables
drift and diffusion coefficients
Fokker-Planck equation 88f
Langevin equation 57

184ff

58, 91

Transient
of amplitude for laser 402ff
of cumulants for laser 403, 407
of distribution for laser 399
of intensity for laser 400, 403, 407
of variance for laser 401, 403, 407
Transition probability
expansion into eigenmodes for laser 387ff
for Kramers equation 252
with linear force 238, 244
for large times 343ff
connection to stationary distribution 345
for Ornstein-Uhlenbeck process 100, 156
for small times 73f
N variables 85
for Wiener process 99
in terms
of biorthogonal set 139
of eigenfunctions 105, 143
Tridiagonal recurrence relations, solution by
Taylor expansion 214
Tridiagonal vector recurrence relation see
Recurrence relations
Truncation of recurrence relation 204
Tunneling junction, Josephson - 281f

Upiteration of recurrence relation 205
for periodic potentials 320f

Van der Pol equation 374

Van der Pol oscillator, including white noise
375f

Variables, reduction of the number 179

Variance 23

Variational problem for one-variable Fokker-
Planck equation 120

Vector recurrence relation see Recurrence
relation

Velocity, thermal 231

Velocity correlation function 33
for Brownian motion in periodic potential

350ff
for harmonic potential 177
for Kramers equation 253
for Kramers equation with linear force 245
inverse friction expansion for Kramers
equation 274
Velocity distribution, stationary 36
Volume element, transformation 89

White noise 3, 32

Wiener-Khintchine theorem 30

Wiener process 40
for phase of laser amplitude 381
solution for one variable 99

WKB method, solution of Fokker-Planck
equation by - 162



